首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
cAMP-dependent protein kinase from Dictyostelium discoideum   总被引:1,自引:0,他引:1  
The cAMP-dependent protein kinase (cAK) from Dictyostelium discoideum is an enzyme composed of one catalytic and one regulatory subunit. Upon binding of cAMP, the holoenzyme dissociates to liberate free active catalytic subunits. The cAK is developmentally regulated, ranging from very little activity in vegetative cells to maximal expression in postaggregative cells. Although there is no immunological cross-reaction between the subunits of cAKs from Dictyostelium and from other organisms, they share several biochemical properties. A complete cDNA for the regulatory subunit has been cloned and sequenced. Only one copy of the gene for the regulatory subunit is present per haploid genome. On the basis of the comparison of the structure of the cAK from Dictyostelium with its counterparts in yeast and higher eukaryotes, we propose a model for the evolution of cyclic-nucleotide-binding proteins.  相似文献   

2.
A protein kinase with unusual characteristics has been found in Dictyostelium discoideum. This kinase can use histone H1 as exogenous substrate, and the activity is stimulated by phospholipids, but not by Ca2+. This enzyme has been partially purified by using chromatography on DEAE-cellulose DE-52, spermine-agarose and phosphatidylserine-polyacrylamide. The protein kinase activity is very labile, even in the presence of protease inhibitors, making further purification difficult. In the activity-containing fractions, an endogenous protein of 140 kDa is labelled in vitro with [gamma-32P]ATP under conditions in which intramolecular rather than intermolecular reactions are favoured. This protein is labelled only in the presence of phospholipids, but not of Ca2+. We propose that the 140 kDa phosphoprotein might be the autophosphorylated enzyme.  相似文献   

3.
4.
A cyclic-AMP-independent nuclear protein kinase has been purified from Dictyostelium discoideum amoebae. The purification procedure involves chromatography of DEAE-Sephadex, phosphocellulose and heparin-Sepharose. The purified enzyme phosphorylates threonine and serine of acidic proteins as casein and phosvitin. Phosphorylation of casein is stimulated by spermine. The kinase requires Mg2+ and can utilize both ATP and GTP as phosphoryl donors. Heparin is a potent inhibitor of the enzyme, being the protein kinase activity fully inhibited at concentrations of 0.5 micrograms/ml. One polypeptide of molecular mass 38 kDa was the major protein band present in the purified kinase preparation as estimated by NaDodSO4 denaturing polyacrylamide gel electrophoresis. This band belongs to the protein kinase because it is the only one that is observed associated with the protein kinase activity when the enzyme preparation is centrifuged in glycerol gradients. The 38-kDa polypeptide is also the major product of autophosphorylation of the enzyme preparation. The enzymatic properties allow to classify the enzyme as a type-II casein kinase. However, its structural properties are different from the mammalian type-II casein kinases and make the D. discoideum enzyme more similar to the plants type-II casein kinases.  相似文献   

5.
Cyclic AMP-dependent protein kinase (ATP-protein phosphotransferase, EC 2.7.1.37) in Dictyostelium discoideum was shown to be developmentally controlled. No activity was measured in vegetative cells, but activity increased rapidly during differentiation. A simple procedure for the isolation of the catalytic subunit of the kinase from aggregating cells is presented. The cycle AMP-dependent holoenzyme could be reconstituted by adding purified D. discoideum cyclic AMP-binding protein. Molecular weight, kinetic parameters, pH dependence and affinity for cyclic AMP were determined for th enzyme. Most properties are similar to those of cyclic AMP-dependent kinase from mammalian cells.  相似文献   

6.
A cyclic AMP dependent protein kinase in Dictyostelium discoideum   总被引:4,自引:0,他引:4  
A cyclic AMP-dependent protein kinase was found to appear during the time course of development of Dictyosteliumdiscoideum. No cyclic AMP dependency was observed at any stage of development in crude 110,000 X G soluble extracts. After partial purification, however, extracts from post-aggregation stages contained enzyme that was activated up to 6-fold by cyclic AMP, whereas protein kinase from earlier stages was not affected by cyclic AMP. Likewise, cyclic AMP binding activity increased from the aggregation to the slug stage of development. Approximately one-half of the total cyclic AMP binding activity co-purified with the cyclic AMP dependent protein kinase. The enzyme from Dictyostelium showed similarities to mammalian protein kinases with respect to its kinetic properties but differed in its behavior on ion-exchange chromatography.  相似文献   

7.
Stimulation of Dictyostelium discoideum amoebae with cAMP was found to induce the specific phosphorylation of a 47,000 molecular weight protein (pP47). This cellular response to cAMP was developmentally regulated. It was first detected in 3 1/2-h starved cells and appeared to persist throughout the aggregation phase of the cells' life cycle. pP47 phosphorylation was specifically induced by cAMP in that amoebae did not respond to stimulation with 5'-AMP, folic acid, Ca2+, and/or the Ca2+ ionophore A23187. cGMP could elicit pP47 phosphorylation but only at high concentrations. Phosphorylation of pP47 in response to cAMP occurred rapidly (within 5 s). The length of time for which it remained phosphorylated depended upon the concentration of the stimulus. With 10(-6) M cAMP, pP47 was phosphorylated for less than 4 min. If amoebae were stimulated with 10(-4) M cAMP, over 30 min were necessary before pP47 was dephosphorylated. Once dephosphorylated, pP47 could again be phosphorylated upon reapplication of the cAMP stimulus.  相似文献   

8.
During the developmental cycle of Dictyostelium discoideum cyclic AMP functions as both a chemotactic signal for aggregation and a regulatory molecule during later events of differentiation. Morphological and biochemical data suggest that cAMP may direct cells during morphogenesis and differentiation. We utilized microtechniques to determine the stage- and cell-specific levels of the cAMP-dependent protein kinase, the probable intracellular cAMP receptor. Kinase activity was low and non-cAMP-dependent in amoebae and early aggregates but increased and became cAMP-dependent in aggregates after the formation of tight cell contacts. Maximum kinase activity and cAMP dependency occurred during the slug and culmination stages. The only differential distribution of the kinase within a single stage occurred during culmination when the activity in the stalks was approximately one-fourth of that in the prespore mass. Preliminary evidence indicates that this difference is not due to an inhibitor. In all other stages tested cAMP-dependent protein kinase activity was equal in prespore and prestalk cells.  相似文献   

9.
Pyruvate kinase (EC 2.7.1.40) from aggregating Dictyostelium discoideum cells has been purified to homogeneity. It has a monomeric molecular weight of 66kD and is tetrameric in low ionic strength buffers. The enzyme is not regulated by fructose 1,6-bisphosphate or by alanine and appears to resemble the M1 isoenzyme from rat liver most closely, although its activity is not inhibited by ATP.  相似文献   

10.
An adenosine cyclic 3',5'-monophosphate (cAMP) dependent protein kinase has recently been shown to exist in Dictyostelium discoideum and to be developmentally regulated. In this report we have followed the chromatographic behavior of both the holoenzyme and its subunits. A cAMP-dependent holoenzyme could be obtained from the 100000 g soluble fraction after passage through DE-52 cellulose (pH 7.5) and Sephacryl S300. Under conditions of low pH the holoenzyme could be further purified by flat-bed electrofocusing (pI = 6.8). Application of the holoenzyme to electrofocusing at high pH resulted in dissociation of the holoenzyme into a cAMP binding component (pI = 6.1) and a cAMP-independent catalytic activity (pI = 7.4). Dissociation of the holoenzyme into subunits also occurred during histone affinity chromatography and gel filtration chromatography (S300) in the presence of a dissociating buffer. Although the subunit structure was clearly evident during chromatography, the holoenzyme could not be dissociated by simple addition of cAMP to the extract. The catalytic subunit could be purified further by CM-Sephadex, DE-52 cellulose (pH 8.5), histone affinity, and hydrophobic chromatography. The regulatory subunit was further purified by DE-52 cellulose (pH 8.5) and cAMP affinity chromatography. Proof that the cAMP binding activity and the cAMP-independent catalytic activity were in fact the regulatory and catalytic subunits was shown by reconstitution of the cAMP-dependent holoenzyme from the purified subunits. By using these separation procedures, one can obtain from extracts of Dictyostelium the subunits that are free of each other as well as free of any endogenous protein substrates.  相似文献   

11.
Gunzburg J  Veron M 《The EMBO journal》1982,1(9):1063-1068
We demonstrate the occurrence of a cAMP-dependent protein kinase in Dictyostelium discoideum cells at the terminal stage of differentiation. A cAMP-binding component was purified to homogeneity by affinity chromatography. This subunit inhibits the activity of purified catalytic subunit from beef heart protein kinase; the inhibition is reversed upon addition of cAMP. The protein is highly specific for cAMP and has a dissociation constant of 4 nM. The isolated regulatory subunit is a monomer of 39 K, with a sedimentation coefficient of 3.5S and a frictional coefficient of 1.24. The differences between this regulatory subunit and regulatory subunits of protein kinases from other sources are discussed.  相似文献   

12.
Endogenous proteins which could serve as substrates for cyclic AMP-dependent protein kinase in vitro were measured in cytosolic fractions at four stages of development. A peak of cyclic AMP-dependent phosphorylation occurred at the slug stage, coincident with the appearance of cyclic AMP-dependent protein kinase. After partial purification of the slug-stage extracts by DE-52 cellulose and Sephacryl S-300 chromatography, cyclic AMP dependency of six proteins was observed. The apparent subunit molecular weights of the proteins were greater than 200,000, 110,000, 107,000, 91,000, 75,000 and 69,000. Upon further purification of the cyclic AMP-dependent protein kinase by chromatofocusing, the endogenous substrates were separated from the enzyme. In addition, the enzyme separated into catalytic and regulatory subunits. If the purified catalytic subunit was added to heated S300 fractions, proteins with apparent molecular weights of 91,000 and 107,000 were specificity phosphorylated. The results show the stage-dependent appearance of a cyclic AMP-dependent protein kinase and point out several in vitro substrates for the enzyme.  相似文献   

13.
Cyclic AMP oscillations in suspensions of Dictyostelium discoideum   总被引:1,自引:0,他引:1  
A model developed previously for signal relay and adaptation in the cellular slime mould Dictyostelium discoideum is shown to account for the observed oscillations of calcium and cyclic AMP in cellular suspensions. A qualitative argument is given which explains how the oscillations arise, and numerical computations show how characteristics such as the period and amplitude of the periodic solutions depend on parameters in the model. Several extensions of the basic model are investigated, including the effect of cell aggregation and the effect of time delays in the activation and adaptation processes. The dynamics of mixed cell populations in which only a small fraction of the cells are capable of autonomous oscillation are also studied.  相似文献   

14.
Actin filaments and microtubules are two major cytoskeletal systems involved in wide cellular processes, and the organizations of their filamentous networks are regulated by a large number of associated proteins. Recently, evidence has accumulated for the functional cooperation between the two filament systems via associated proteins. However, little is known about the interactions of the kinesin superfamily proteins, a class of microtubule-based motor proteins, with actin filaments. Here, we describe the identification and characterization of a novel kinesin-related protein named DdKin5 from Dictyostelium. DdKin5 consists of an N-terminal conserved motor domain, a central stalk region, and a C-terminal tail domain. The motor domain showed binding to microtubules in an ATP-dependent manner that is characteristic of kinesin-related proteins. We found that the C-terminal tail domain directly interacts with actin filaments and bundles them in vitro. Immunofluorescence studies showed that DdKin5 is specifically enriched at the actin-rich surface protrusions in cells. Overexpression of the DdKin5 protein affected the organization of actin filaments in cells. We propose that a kinesin-related protein, DdKin5, is a novel actin-bundling protein and a potential cross-linker of actin filaments and microtubules associated with specific actin-based structures in Dictyostelium.  相似文献   

15.
Abstract A protein kinase from Dictyostelium discoideum which phosphorylates the synthetic peptide, calmodulin-dependent protein kinase substrate (CDPKS, amino acid sequence: PLRRTLSVAA) and is stimulated by Ca2+/calmodulin is described. This is the first report of a protein kinase with these characteristics in D. discoideum . The enzyme was partially purified by Q-Sepharose chromatography. The protein kinase is very labile, and rapidly loses Ca2+/calmodulin-dependence upon standing at 4°C, even in the presence of protease inhibitors, making further purification and characterisation difficult. In the active fractions, a 55 kDa polypeptide is labelled with [γ-32 P]ATP in vitro under conditions in which intramolecular rather than intermolecular reactions are favoured. The phosphorylation of this peptide is stimulated in the presence of Ca2+ and calmodulin but not Ca2+ alone. Ca2+/calmodulin-dependent stimulation is inhibited in the presence of the calmodulin antagonist, trifluoperazine (TFP). It is proposed that the 55 kDa polypeptide may represent the autophosphorylated form of the enzyme.  相似文献   

16.
17.
Summary Crude membrane fractions of Dictyostelium discoideum show the capacity to synthesize (1-3H)dolicholphosphate from (1-3H)dolichol. Formation of dolicholphosphate increased continuously over the first 15 min. The reaction rate was nearly linear with respect to the dolichol content up to 150 µM. The phosphate donor for the reaction is CTP. The optimum concentration of CTP is about 0,75 mM. The reaction is dependent on divalent metal ions, magnesium being more effective than calcium or manganese.The activity of the polyisoprenol kinase depends on the course of the early development. Maximum enzyme activities are present 4–6 h after the induction of the differentiation.  相似文献   

18.
The green fluorescent protein (GFP) is currently being used for diverse cellular biology approaches, mainly as a protein tag or to monitor gene expression. Recently it has been shown that GFP can also be used to monitor the activation of second messenger pathways by the use of fluorescence resonance energy transfer (FRET) between two different GFP mutants fused to a Ca2+sensor. We show here that GFP fusions can also be used to obtain information on regions essential for protein function. As FRET requires the two GFPs to be very close, N- or C-terminal fusion proteins will not generally produce FRET between two interacting proteins. In order to increase the probability of FRET, we decided to study the effect of random insertion of two GFP mutants into a protein of interest. We describe here a methodology for random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit using a bacterial expression vector. The selection and analysis of 120 green fluorescent colonies revealed that the insertions were distributed throughout the R coding region. 14 R/GFP fusion proteins were partially purified and characterized for cAMP binding, fluorescence and ability to inhibit PKA catalytic activity. This study reveals that GFP insertion only moderately disturbed the overall folding of the protein or the proper folding of another domain of the protein, as tested by cAMP binding capacity. Furthermore, three R subunits out of 14, which harbour a GFP inserted in the cAMP binding site B, inhibit PKA catalytic subunit in a cAMP-dependent manner. Random insertion of GFP within the R subunit sets the path to develop two-component FRET with the C subunit.  相似文献   

19.
The deletion of the gene for the regulatory subunit of protein kinase A (PKA) results in constitutively active PKA in the pkaR mutant. To investigate the role of PKA in the basic motile behavior and chemotaxis of Dictyostelium discoideum, pkaR mutant cells were subjected to computer-assisted two- and three-dimensional motion analysis. pkaR mutant cells crawled at only half the speed of wild-type cells in buffer, chemotaxed in spatial gradients of cyclic AMP (cAMP) but with reduced efficiency, were incapable of suppressing lateral pseudopods in the front of temporal waves of cAMP, a requirement for natural chemotaxis, did not exhibit the normal velocity surge in response to the front of a wave, and were incapable of chemotaxing toward an aggregation center in natural waves generated by wild-type cells that made up the majority of cells in mixed cultures. Many of the behavioral defects appeared to be the result of the constitutively ovoid shape of the pkaR mutant cells, which forced the dominant pseudopod off the substratum and to the top of the cell body. The behavioral abnormalities that pkaR mutant cells shared with regA mutant cells are discussed by considering the pathway ERK2 —| RegA —| [cAMP] → PKA, which emanates from the front of a wave. The results demonstrate that cells must suppress PKA activity in order to elongate along a substratum, suppress lateral-pseudopod formation, and crawl and chemotax efficiently. The results also implicate PKA activation in dismantling cell polarity at the peak and in the back of a natural cAMP wave.  相似文献   

20.
The purification, cloning, and complete cDNA-derived sequence of a 17-kDa protein of Dictyostelium discoideum are described. This protein binds to F-actin in a pH-dependent and saturable manner. It induces actin polymerization in the absence of Mg2+ or K+, and is enriched in the submembranous region of the amoeboid cells as indicated by immunofluorescence labeling of cryosections. The mRNA as well as the protein are present throughout growth and all stages of development. The protein is detected in both soluble and particulate fractions of the cells. From a plasma membrane-enriched fraction, minor amounts of the protein are stepwise solubilized with 1.5 M KCl, 0.1 M NaOH, and Triton X-100, but most of the protein is only solubilized with 1% sodium dodecyl sulfate. As judged by the apparent molecular mass in sodium dodecyl sulfate-polyacrylamide gels, immunological cross-reactivity, and two-dimensional electrophoresis, the 17-kDa proteins from the soluble and particulate fraction resemble each other. The cDNA sequence does not reveal any signal peptide, trans-membrane region, or N-glycosylation site. Southern blots hybridized with a cDNA probe that spans the entire coding region show that the 17-kDa protein is encoded by a single gene. The most characteristic feature of the protein is its high content of 31 histidine residues out of 118 amino acids. We designate this protein as hisactophilin and suggest that this histidine-rich protein responds in its actin-binding activity to changes in cellular pH upon chemotactic signal reception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号