首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Maize (Zea mays L.) and pearl millet (Pennisetum americanum (L.) Leeke) seedlings were exposed to [15N]nitrate for 1-h periods at eight times during a 24-h period (16–8 h light-dark for maize; 14–10 h for millet). Influx of [15N]nitrate as well as its reduction and translocation were determined during each period. The efflux of previously absorbed [14N]nitrate to the uptake solution was also estimated. No marked diurnal changes in [14N]nitrate efflux or [15N]nitrate influx were evident in maize. In contrast, [14N]nitrate efflux from millet increased and eventually exceeded [15N]nitrate influx during the late dark and early light periods, resulting in net nitrate efflux from the roots. The dissimilarity of their diurnal patterns indicates that influx and efflux are independently regulated. In both species, [15N]nitrate reduction and 15N translocation to shoots were curtailed more by darkness than was [15N]nitrate influx. In the light, maize reduced 15% and millet 24% of the incoming [15N]nitrate. In darkness, reduction dropped to 11 and 17%, respectively. Since the accumulation of reduced-15N in shoots declined abruptly in darkness, whereas that in roots was little affected, it is suggested that in darkness [15N]nitrate reduction occurred primarily in roots. The decrease in nitrate uptake and reduction in darkness was not related to efflux, which remained constant in maize and did not respond immediately to darkness in pearl millet.Paper No. 6722 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh  相似文献   

2.
Two experiments were conducted independently with plants of cassava (Manihot esculenta Crantz) growing in sand with nutrient solutions with four nitrate concentrations (0.5, 3, 6 or 12 mM). In leaves, nitrate-N was undetectable at the low nitrate applications; total-N, ammonium-N, amino acid-N, reduced-N and insoluble-N all increased linearly, while soluble proteins did it curvilinearly, with increasing nitrate supply. In contrast, soluble-N did not respond to N treatments. Total-N and soluble proteins, but not nitrate-N or ammonium-N, were much higher in leaves than in roots. Plants grown under severe N deficiency accumulated ammonium-N and amino acid-N in their roots. Further, plants were exposed to either 3 or 12 mM nitrate-N, and leaf activities of key N-assimilating enzymes were evaluated. Activities of nitrate reductase, glutamine synthetase, glutamate synthase and glutamate dehydrogenase were considerably lower in low nitrate supply than in high one. Despite the low nitrate reductase activity, cassava leaves showed an ability to maintain a large proportion of N in soluble proteins.  相似文献   

3.
There was a large increase in nitrate reductase activity (NAR) assayed both in vivo and in vitro in roots of barley plants (cv. Midas_ grown with roots at 10°C and shoots at 20°C, compared with whole plants grown at 20°C. There were diurnal fluctuations in NRA in roots from both treatments, but they were much greater in roots grown at 20°C, where NRA fell to a very low value in the dark period. The diurnal fluctuations in the malate content of the roots were also related to the root growth temperature. Plants with roots grown at the lower temperature had a higher malate content, especially in the dark period where it was 20 times greater than in plants with roots at 20°C. At all times there was a three-fold increase in soluble carbohydrate in cooled roots and diurnal fluctuations were much less pronounced than those of malate. Growth at low temperatures increased the total flux of amino N into the xylem sap and increased the proportion of reduced N in the total N flux. At certain times of day both 10°C- and 20°C-grown roots responded to exogeneous malate by increasing the flux of amino acid into the xylem sap, although this effect was always more pronounced in 20°C-grown roots.  相似文献   

4.
During the night, shoot nitrate concentration in spinach (Spinacia oleracea L. cv. Vroeg Reuzenblad) increased due to increased uptake of nitrate by the roots. When the plants were subjected to a one night “low light’period at 35 μmol m?2 s?1, the shoot nitrate concentration did not increase and was reduced by 25% compared to control plants in the dark. The major contribution to this decrease was located in the leaf blades, where the nitrate concentration was decreased by 60%, while the petiole nitrate concentration decreased by only 9%. Nitrate accumulated in the leaf blade vacuoles during a dark night, but this was not the case during the “low light’period. This decrease in vacuolar nitrate concentration, compared to control plants in the dark, was not caused by increased amounts of leaf blade nitrate reductase (NR; EC 1.6.6.1). During a “low light’night period, the cytoplasmic soluble carbohydrate concentration was increased compared to the control plants in the dark. Calculations showed in situ NR activity to be higher than in the control plants in the dark. This increase in NR activity, however, was not large enough to account for the total difference found in the shoot nitrate concentration. Net uptake of nitrate by the roots was increased during the initial hours of the dark night, while vacuolar nitrate concentration in the leaf blades increased at the same time. During the “low light’night period, however, net uptake of nitrate by the roots did not increase, and vacuolar nitrate concentration did not change. We conclude that nitrate uptake by the roots and vacuolar nitrate concentration in the leaf blades are tightly coupled. The decreased shoot nitrate concentration is mainly caused by a reduction in net uptake of nitrate by the roots. During the “low light’night period, carbohydrates and malic acid partly replaced vacuolar nitrate. A “low light’period one night prior to harvest provides a valuable tool to reduce shoot nitrate concentrations in spinach grown in greenhouses in the winter months.  相似文献   

5.
Roots of decapitated maize seedlings (Zea mays L.) were exposed for 12 hours to 1.0 millimolar KNO3 (98.5 atom per cent 15N) in the presence and absence (control) of 0.1 millimolar p-fluorophenylalanine (FPA), an analog of the amino acid phenylalanine. FPA decreased nitrate uptake but had little effect on potassium uptake. In contrast, accumulation of both ions in the xylem exudate was greatly restricted. The proportion of reduced 15N-nitrogen that was translocated at each time was also restricted by FPA. These observations are interpreted as indicating that synthesis of functional protein(s) is required for nitrate uptake and for transport of potassium, nitrate, and reduced-15N from xylem parenchyma cells into xylem elements. The effect of FPA on nitrate reduction is less clear. Initially, FPA limited nitrate reduction more than nitrate uptake, but by 8 hours the cumulative reduction of entering nitrate was similar (~35%) in both control and FPA-treated roots. A relationship between nitrate uptake and nitrate reduction is implied. It is suggested that nitrate influx regulates the proportion of nitrate reductase in the active state, and thereby regulates concurrent nitrate reduction in decapitated maize seedlings.  相似文献   

6.
Experiments were conducted to determine if nitrate (15N-labeled) was taken up and assimilated by intact soybean (Glycine max [L.] Merr. cv Williams) plants during extended periods of dark. Nitrate was taken up by soybean roots throughout a 12-hour dark period. The 15N-labeled nitrogen was also translocated to the plant shoots, but at a slower rate than the rate of accumulation in the roots. Much of the nitrogen (15N-labeled) was present in a nonreduced form, although considerable soluble-reduced nitrogen (15N-labeled) accumulated throughout the dark period. The 15N-labeled, soluble-reduced nitrogen fraction accounted for nearly 30% of the total 15N found in plant roots and more than 63% of the total 15N found in plant tops after 12 hours of dark. This provided evidence that intact soybean plants take up and metabolize significant quantities of nitrate to reduced N forms in the dark.

In addition to nitrate influx during the dark, it was shown that there was a concomitant loss of 15N-labeled nitrogen compounds from previously 15N-labeled plants to a natural abundance 15N nutrient solution. Thus, evidence was obtained which indicated that light was not directly essential for flux and reduction of nitrate by intact soybean plants.

  相似文献   

7.
Light dependency of nitrate and nitrite assimilation to reduced-N in leaves remains a controversial issue in the literature. With the objective of resolving this controversy, the light requirement for nitrate and nitrite assimilation was investigated in several plant species. Dark and light assimilation of [15N]nitrate and [15N]nitrite to ammonium and amino-N was determined with leaves of wheat, corn, soybean, sunflower, and tobacco. In dark aerobic conditions, assimilation of [15N]nitrate as a percentage of the light rate was 16 to 34% for wheat, 9 to 16% for tobacco, 26% for corn, 35 to 76% for soybean, and 55 to 63% for sunflower. In dark aerobic conditions, assimilation of [15N]nitrite as a percentage of the light rate was 11% for wheat, 7% for tobacco, 13% for corn, 28 to 36% for soybeans, and 12% for sunflower. It is concluded that variation among plant species in the light requirement for nitrate and nitrite assimilation explains some of the contradictory results in the literature, but additional explanations must be sought to fully resolve the controversy.

In dark anaerobic conditions, the assimilation of [15N]nitrate to ammonium and amino-N in leaves of wheat, corn, and soybean was 43 to 58% of the dark aerobic rate while dark anaerobic assimilation of [15N]nitrite for the same species was 31 to 41% of the dark aerobic rate. In contrast, accumulation of nitrite in leaves of the same species in the dark was 2.5-to 20-fold higher under anaerobic than aerobic conditions. Therefore, dark assimilation of nitrite cannot alone account for the absence of nitrite accumulation in the in vivo nitrate reductase assay under aerobic conditions. Oxygen apparently inhibits nitrate reduction in the dark even in leaves of plant species that exhibit a relatively high dark rate of [15N]nitrite assimilation.

  相似文献   

8.
The mechanism of nitrate uptake for assimilation in procaryotes is not known. We used the radioactive isotope, 13N as NO3 -, to study this process in a prevalent soil bacterium, Pseudomonas fluorescens. Cultures grown on ammonium sulfate or ammonium nitrate failed to take up labeled nitrate, indicating ammonium repressed synthesis of the assimilatory enzymes. Cultures grown on nitrite or under ammonium limitation had measurable nitrate reductase activity, indicating that the assimilatory enzymes need not be induced by nitrate. In cultures with an active nitrate reductase, the form of 13N internally was ammonium and amino acids; the amino acid labeling pattern indicated that 13NO3 - was assimilated via glutamine synthetase and glutamate synthase. Cultures grown on tungstate to inactivate the reductase concentrated NO3 - at least sixfold. Chlorate had no effect on nitrate transport or assimilation, nor on reduction in cell-free extracts. Ammonium inhibited nitrate uptake in cells with and without active nitrate reductases, but had no effect on cell-free nitrate reduction, indicating the site of inhibition was nitrate transport into the cytoplasm. Nitrate assimilation in cells grown on nitrate and nitrate uptake into cells grown with tungstate on nitrite both followed Michaelis-Menten kinetics with similar K mvalues, 7 M. Both azide and cyanide inhibited nitrate assimilation. Our findings suggest that Pseudomonas fluorescens can take up nitrate via active transport and that nitrate assimilation is both inhibited and repressed by ammonium.  相似文献   

9.
The effect of amino acids on nitrate transport was studied in Zea mays cell suspension cultures and in Zea mays excised roots. The inclusion of aspartic acid, arginine, glutamine and glycine (15mM total amino acids) in a complete cell-culture media containing 1.0 mM NO3 - strongly inhibited nitrate uptake and the induction of accelerated uptake rates. The nitrate uptake rate increased sharply once solution amino acid levels fell below detection limits. Glutamine alone inhibited induction in the cell suspension culture. Maize seedlings germinated and grown for 7 days in a 15 mM mixture of amino acids also had lower nitrate uptake rates than seedlings grown in 0.5 mM Ca(NO3)2 or 1 mM CaCl2. As amino acids are the end product of nitrate assimilation, the results suggest an end-product feed-back mechanism for the regulation of nitrate uptake.  相似文献   

10.
J. Boucaud  J. Bigot 《Plant and Soil》1989,114(1):121-125
The activities of key enzymes involved in N assimilation were investigated after defoliation of 6-week-old ryegrass plants grown in water culture conditions. In a first experiment, nitrate reductase, glutamine synthetase and glutamate dehydrogenase activities were measured in roots, stubble and leaves on the day of cutting and at 7-day intervals over the following 5-week period of regrowth. Ammonia assimilation enzymes showed little change whereas the nitrate reductase activity sharply decreased 2 weeks after clipping. In a second experiment, the nitrate reductase activity was measured at 2- or 3-day intervals 1 week before and 3 weeks after clipping.In vivo andin vitro assays both showed an increasing activity in leaves up to 8 days after cutting while root activity decreased. The opposite changes then occurred and both organs recovered their initial nitrate reductase activity levels after 12–14 days of regrowth. These fluctuations in nitrate reductase activity were considered to be related to the capacity for C assimilation and the nitrate availability.  相似文献   

11.
Amino acid uptake in deciduous and coniferous taiga ecosystems   总被引:2,自引:0,他引:2  
We measured in situ uptake of amino acids and ammonium across deciduous and coniferous taiga forest ecosystems in interior Alaska to examine the idea that late successional (coniferous) forests rely more heavily on dissolved organic nitrogen (DON), than do early successional (deciduous) ecosystems. We traced 15N-NH4+ and 13C-15N-amino acids from the soil solution into plant roots and soil pools over a 24 h period in stands of early successional willow and late successional black spruce. Late successional soils have much higher concentrations of amino acid in soil solution and a greater ratio of DON to dissolved inorganic N (DIN) (ammonium plus nitrate) than do early successional soils. Moreover, late successional coniferous forests exhibit higher rates of soil proteolytic activity, but lower rates of inorganic N turnover. Differences in ammonium and amino acid uptake by early successional willow stands were insignificant. By contrast, the in situ uptake of amino acid by late successional black spruce forests were approximately 4-fold greater than ammonium uptake. The relative difference in uptake of ammonium and amino acids in these forests was approximately proportional to the relative difference of these N forms in the soil solution. Thus, we suggest that differences in uptake of different N forms across succession in these boreal forests largely reflect edaphic variation in available soil N (composition), rather than any apparent physiological specialization to absorb particular forms of N. These finding are relevant to our understanding of how taiga ecosystems may respond to increases in temperature, fire frequency, N deposition, and other potential consequences of global change.  相似文献   

12.
Protein, amino acids and ammonium were the main forms of soluble soil nitrogen in the soil solution of a subtropical heathland (wallum). After fire, soil ammonium and nitrate increased 90- and 60-fold, respectively. Despite this increase in nitrate availability after fire, wallum species exhibited uniformly low nitrate reductase activities and low leaf and xylem nitrate. During waterlogging soil amino acids increased, particularly γ-aminobutyric acid (GABA) which accounted for over 50% of amino nitrogen. Non-mycorrhizal wallum species were significantly (P < 0.05) 15N-enriched (0.3–4.3‰) compared to species with mycorrhizal associations (ericoid-type, ecto-, va-mycorrhizal) which were strongly depleted in 15N (-6.3 to -1.8‰). Lignotubers and roots had δ15N signatures similar to that of the leaves of respective species. The exceptions were fine roots of ecto-, ecto/va-, and ericoid type mycorrhizal species which were enriched in 15N (0.1–2.4‰). The 515N signatures of δ15Ntotal soil N and δ15Nsoil NH4+ were in the range 3.7–4.5‰, whereas δ15Nsoil NO3? was significantly (P < 0.05) more enriched in 15N (9.2–9.8‰). It is proposed that there is discrimination against 15N during transfer of nitrogen from fungal to plant partner. Roots of selected species incorporated nitrogen sources in the order of preference: ammonium > glycine > nitrate. The exception were proteoid roots of Hakea (Proteaceae) which incorporated equal amounts of glycine and ammonium.  相似文献   

13.
We have investigated the response of two peanut cultivars (TEGUA and UTRE) with different growth habits and branching pattern structures to different nitrogen (N) sources, namely, N-fertilizer or N2 made available by symbiotic fixation, and analysed the pattern of nitrate reductase (NR) activity in these cultivars. Nitrate and amino acid contents were also examined under these growth conditions. In terms of nitrogen source, cv. TEGUA showed a better response to inoculation with Bradyrhizobium sp. SEMIA 6144 at 40 days after planting, while cv. UTRE responded better to N-fertilizer (5 mM KNO3). Both cultivars showed different patterns of NR activity in the analyzed plant organs (leaves, roots, and nodules), which were dependent on the N source. When nitrogen became available to the plant through symbiotic N2 fixation, the patterns of NR activity distribution were different in the two cultivars, with cv. TEGUA showing a higher NR activity in the nodules than in the leaves and roots, and cv. UTRE showing no difference in terms of NR activity among organs. The nitrate and amino acid contents showed a similar trend between the two cultivars, with the highest nitrate content in the leaves of fertilized plants and the highest amino acid content in the nodules. The high nitrate content of the leaves of cv. UTRE indicated the better response of this cultivar to N-fertilizer.  相似文献   

14.
Five-week-old wheat plants were exposed, under controlled environmental conditions, to 60 nl 1?115NO2 or to purified air. After 48 and 96 h of exposure, leaves, stalks and roots were analysed for 15N-enrichment in α-amino nitrogen of soluble, free amino acids. In addition, the in vitro nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NIR, EC 1.7.7.1) activities were determined in the leaves. NR activity in the leaves decreased continously during the 96-h exposure to purified air. In the leaves exposed to 15NO2, NR activity increased within the first 24 h, then decreased, and reached the level of controls after 96 h. NiR activity in leaves exposed to purified air was almost constant during the 96-h exposure. In leaves exposed to 15NO2, NiR activity increased within the first 48 h, then decreased, and reached the level of controls after 72 h, Exposure to 15NO2 enhanced the total content of soluble, free amino acids in all tissues analysed. Most of this increase was attributed to Glu in the leaves and to Asn plus Gln the α-amino group of soluble, free amino acids was observed in the leaves, the lowest enrichment in the roots. The main labelled amino compounds were Glu (with 8.0%15N enrichment compared to the control), γ-aminobutyric acid (GABA; 7.9%), Ala (7.2%). Ser (6.8%), Asp (5.5%) and Gln (4.6%). Appreciable incorporation of 15 into Asn was not found. After 96 h exposure to 15NO2 the 15N enrichment in the α-amino group of soluble, free amino acids in the leaves declined as compared to the values obtained after 48 h fumigation. The possible pathway and the time course of 15N incorporation into soluble, free amino acids from the 15NO2 absorbed are discussed.  相似文献   

15.
This study investigated the effects of nitrate and phosphate nutrition on chicory tap root development and chicon quality. Plants of chicory (Cichorium intybus flash) were grown on four concentrations of nitrate and phosphate: 3 mM NO3 / 1 mM PO 4 3– , high N and high P (control plants, N / P); 3 mM NO 3 / 0.05 mM H2PO3– 4, high N and low P (N / p); 0.6 mM NO3 / 1 mM PO 4 3– , low N and high P (n / P); 0.6 mM NO 3 / 0.05 mM PO 4 3– , low N and low P (n / p). The results suggested that, nitrogen limitation had the greatest impact on the shoot/root dry weight ratio. Only small changes in the shoot/root dry weight could be attributed to P limitation alone. Compared with the control, N limitation caused a marked increase in root SST activity (sucrose sucrose fructosyl transferase, the enzyme responsible for fructan synthesis in roots), the effect of P limitation on SST activity was less pronounced. The activity of SS (sucrose synthase) was also noticeably elevated at the early sample data by N limitation. N and P uptake were estimated by the amount of N and P accumulated by the whole plant during the vegetative period. With N limitation, P accumulation was decreased by 40-60% over the experimental period. The effects of P limitation on N accumulation were more variable, N uptake was 60% lower than the control during the tuberizing period (107 days after sowing). With N limitation, P concentrations in roots were lowered by 20-25%. With P limitation, total N concentration in roots decreased by 50% relative to the control, while nitrate concentration was increased more than 8 fold. These effects were detected only at 107 DAS. The amino acid content of roots was not affected by P limitation, however, N limitation altered strongly total amino acids. P limitation did alter the relative amino acid composition of roots early in the vegetative period: Roots harvested at the end of vegetative period were forced in the dark to produce an etiolated bud, the edible chicon. High N and high P fertility (N/P) were associated to a poor chicon yield and quality. However the presence of low P during vegetative growth moderates adverse effects of high nitrate and greatly improved chicon yeild and quality.  相似文献   

16.
The rate of nitrate uptake by N-depleted French dwarf bean (Phaseolus vulgaris L. cv. Witte Krombek) increased steadily during the first 6 h after addition of NO3 -After this initial phase the rale remained constant for many hours. Detached root systems showed the same time-course of uptake as roots of intact plants. In vivo nitrate reductase activity (NRA) was assayed with or without exogenous NO3- in the incubation medium and the result ing activities were denoted potential and actual level, respectively. In roots the difference between actual and potential NRA disappeared within 15 min after addition of nitrate, and NRA increased for about 15 h. Both potential and actual NRA were initially very low. In leaves, however, potential NRA was initially very high and was not affected by ambient nitrate (0.1–5 mol m-3) for about 10 h. Actual and potential leaf NRA became equal after the same period of time. In the course of nitrate nutrition, the two nitrate reductase activities in leaves were differentially inhibited by cycloheximide (3.6 mmol m-3) and tungstate (1 mol m-3). We suggest that initial potential NRA reflects the activity of pre-existing enzyme, whereas actual NRA depends on enzyme assembly during NO3- supply. Apparent induction of nitrate uptake and most (85%) of the actual in vivo NRA occurred in the root system during the first 6 h of nitrate utilization by dwarf bean.  相似文献   

17.
Tomato plants (Lycopersicon esculentum) grown in a complete nutrient solution for 8 days were transferred to a P-free solution of pH 6.0. Within 2 days of transfer the rate of alkalinization of the nutrient solution declined and by 4 days the solution had become acid. Nitrate transferred from roots to leaves was depressed over this period, and the rate of nitrate reductase activity in the leaves (the main site of assimilation of nitrate in tomato) had declined by 60% within 5 days of transfer. The activity of PEP carboxylase in the leaves of the P-deficient plants increased after 3 days, eventually becoming 3 times greater than in the leaves of plants adequately supplied with P. The PEP carboxylase activity in the roots of the P-deficient plants increased within 2 days, becoming 4 times greater after 8 days' growth. These results are discussed in relation to mechanisms for enhancement of P acquisition and maintenance of cation and anion uptake during P-deficiency.  相似文献   

18.
Youssefi  Farbod  Weinbaum  Steven A.  Brown  Patrick H. 《Plant and Soil》2000,227(1-2):273-281
Two treatments were employed to influence the amount of amino nitrogen (N) transport in phloem. In walnut trees (Juglans regia L.), developing fruit significantly reduced the efflux of foliar-applied 15N-enriched urea from treated spurs over a 33-day period in comparison with similarly-treated defruited spurs. Those data suggest that local aboveground demand for N influences vascular transport of amino N. In another experiment, a 1% urea solution was applied foliarly to 5-year old `Mission' almond trees [Prunus dulcis (Mill.) D. A. Webb] to increase the concentration of amino N in the phloem. The effect of foliar N treatments on a) the transport and distribution of labelled urea N within the trees over the experimental period and b) the uptake of soil-applied labelled N were determined by replicated whole tree excavation, fractionation into various tree components and mass spectrometric analyses of the 14N/15N ratios. Concentrations and composition of amino acids in the phloem and xylem saps of control trees and trees receiving foliar-applied urea were also determined. In foliar urea-treated trees, the amino acid concentrations increased significantly in leaf and bark phloem exudate, within 24 and 96 h, respectively. Foliar-applied urea N was translocated to the roots of almond trees over the experimental period and decreased soil N uptake. The results of these experiments are consistent with the hypothesis that aboveground N demand affects the amount of amino N cycling between shoots and roots, and may be involved in the regulation of soil N uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Summary The leaf and root nitrate reductase activities were measured in 7 day-old barley seedlings by anoxic nitrite accumulation in darkness, during 48h after the transfer from a N-starved medium to a 1.5 mM K15NO3 medium. Thisin situ nitrate reduction was compared with the15N incorporation in the reduced N fraction of the whole seedlings.The nitrate reduction integrated fromin situ measurements was lower than the reduced15N accumulation. The rootin situ nitrate reductase activity seemed to account for only the third of the real root nitrate reduction, which may have been responsible for the overall underestimation. This discrepancy was partly explained by the ability of the root to reduce nitrite in an anoxic environment.These results suggest that, after correction of thein situ estimation of the nitrate reduction. the roots contribute to about 50% of the total assimilation.  相似文献   

20.
Brady  D. J.  Gregory  P. J.  Fillery  I. R. P. 《Plant and Soil》1993,(1):155-158
A technique was developed to determine the physiological activity of defined sections of seminal roots of wheat grown in sand. Wheat plants were grown for 2 weeks in narrow columns of N-deficient sand to which all other nutrients had been added. The columns were split longitudinally and 15N-labelled nitrate, in an agar medium, supplied to 2 cm sections of root. Shoots and roots were analysed after 24 h to determine the uptake of 15N. Three sections were examined on either the secondary or tertiary seminal root: 1 cm from the seed (basal segment), 35 cm from the seed (middle segment) and 4 cm from the root apex (apical segment). Total uptake was greatest from the basal and middle segments, declining by 50% from the apical segment. However, uptake per unit root length, including exposed sections of lateral roots, was not significantly different along the root.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号