首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Possible roles of dibutyryladenosine 3',5'-cyclic monophosphate (cAMP) and dibutyryl-guanosine 3',5'-cyclic monophosphate (cGMP) in regulation of hepatocyte DNA synthesis were examined using primary cultures of young-adult rat hepatocytes maintained in arginine-free medium. Throughout the experimental period, nonparenchymal cells were hardly observed in the selective medium. When epidermal growth factor (EGF) was added to the cultures, a transient increase in the intracellular cAMP level preceded the elevation of hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was remarkably enhanced by the elevation of the intracellular cAMP level induced by treatment with cAMP alone or a combination of cAMP and theophylline, an inhibitor of cyclic nucleotide phosphodiesterase. Furthermore, the early elevation of intracellular cAMP alone, which was induced by treatment with the combination of cAMP and theophylline, caused a remarkable increase in hepatocyte DNA synthesis. On the other hand, addition of EGF to the cultures caused a rapid decrease in the intracellular cGMP level followed by an increase in hepatocyte DNA synthesis. EGF-stimulated hepatocyte DNA synthesis was severely suppressed or completely inhibited by the elevation of the intracellular cGMP level induced by treatment with cGMP alone or a combination of cGMP and dipyridamole, a specific inhibitor of cGMP phosphodiesterase. These findings indicate that cAMP and cGMP act oppositely on the regulation of DNA synthesis of young-adult rat hepatocytes in primary culture: cAMP plays a positive role, whereas cGMP plays a negative role. Also it is strongly suggested that an early elevation of the intracellular cAMP level is essential for the onset of DNA synthesis in hepatocyte primary cultures.  相似文献   

2.
The effects of isoproterenol, acetylcholine (Ach), and adenosine, on cyclic AMP (cAMP) and cyclic GMP (cGMP) contents were examined in chick hearts at various stages of embryonic development. The basal cAMP content was highest (87.7 +/- 1.3 pmol/mg protein) in young (3-day) embryonic chick hearts and decreased during development (9.6 +/- 0.6 pmol/mg protein in 9-19-day-old hearts). On the other hand, the cGMP content was lowest (45.5 +/- 2.3 fmol/mg protein) in young (3-day) embryonic chick hearts and increased during development (338 +/- 15.0 fmol/mg protein in 14-19-day-old hearts). Iso increased the cAMP concentration in embryonic hearts at all ages. Ach and Ado had no effect on the cAMP content at all ages. However, the Isoproterenol-induced stimulation of cAMP was inhibited by Ach and Adenosine at all ages. In young embryonic hearts, Ach and Ado increased cGMP concentration only slightly, whereas these agents caused a substantial increase in cGMP concentration in the older hearts. Thus, there was a clear age difference in the effects of Ach and Adenosine on the cGMP and cAMP concentrations. Nitroprusside and hydrogen peroxide increased cGMP concentration in older hearts (greater than 5-day-old) but not in the 3-day-old embryonic hearts. Thus, guanylate cyclase activity may be low in young (3-day-old) hearts. It summary, the cGMP level is very low in young embryonic chick hearts, and increases markedly during development. The changes in cGMP are reciprocal to those of cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
4.
Cyclic AMP is the primary second messenger mediating odorant signal transduction in mammals. A number of studies indicate that cyclic GMP is also involved in a variety of other olfactory signal transduction processes, including adaptation, neuronal development, and long-term cellular responses in the setting of odorant stimulation. However, the mechanisms that control the production and degradation of cGMP in olfactory sensory neurons (OSNs) remain unclear. Here, we investigate these mechanisms using primary cultures of OSNs. We demonstrate that odorants increase cGMP levels in intact OSNs in vitro. Different from the rapid and transient cAMP responses to odorants, the cGMP elevation is both delayed and sustained. Inhibition of soluble guanylyl cyclase and heme oxygenase blocks these odorant-induced cGMP increases, whereas inhibition of cGMP PDEs (phosphodiesterases) increases this response. cGMP PDE activity is increased by odorant stimulation, and is sensitive to both ambient calcium and cAMP concentrations. Calcium stimulates cGMP PDE activity, whereas cAMP and protein kinase A appears to inhibit it. These data demonstrate a mechanism by which odorant stimulation may regulate cGMP levels through the modulation of cAMP and calcium level in OSNs. Such interactions between odorants and second messenger systems may be important to the integration of immediate and long-term responses in the setting odorant stimulation.  相似文献   

5.
The intracellular level of cGMP was independent of the rate of cell division in cells derived from virally infected brain tissue. The phosphodiesterase inhibitor R07-2956 (4-dimethoxybenzyl-2-imidazolidinone) increased the intracellular level of cGMP in virally infected brain cells, but it did not effect the level of cAMP. There was no correction between the increase in cGMP levels following addition of R07-2956 and changes in mitotic activity in the brain cell cultures. Experimental manipulations which increased the cAMP level were accompanied by a decreased mitotic rate indicating there was a correlation between mitotic activity and the level of cAMP in the same cells. Raising the intracellular level of cAMP by exogenous db-cAMP or cAMP or the use of other phosphodiesterase inhibitors routinely increased the level of cGMP as well. Conversely increasing the intracellular cGMP level by adding the exogenous cGMP increased the level of both cGMP and cAMP.A tissue culture system was used with the cell line derived from viral infected human brain tissue originally obtained from a patient with subacute sclerosing panencephalitis (SSPE). The intracellular levels of cAMP and cGMP were monitored by radioimmunoassay following manipulation of the system by addition of exogenous cGMP (0.05 mM), addition of exogenous db-cAMP (0.5 mM), or cAMP (0.5 mM) and the use of phosphodiesterase inhibitors: theophylline (1.0 mM), papaverine (50 μg/ml), 4-3-butoxy-4-methoxy benzyl-2-imidozalidinone (R020-1724) and R07-2956. Cell division was monitored in treated and non-treated cultures at 24 h intervals by analyzing the cell number and mitotic index.High levels of cGMP were found in cells which were not actively dividing but high levels were just as apt to be present in dividing cells. There was an inverse relationship between cell division and the level of cAMP.  相似文献   

6.
cGMP and cAMP concentrations were studied in cultures of two strains of normal human diploid lung fibroblasts, WI38 and KL-2, under various conditions which alter growth rate. Higher levels of cAMP were found in fibroblasts grown in medium with low (0.1 – 1.0%) serum concentration and thus exhibiting a decreased rate of growth. A rise in cAMP also preceded the decreased growth rate when medium was not changed for 4 days or longer (starvation). The reinitiation of cell growth by addition of fresh medium containing the standard 10% serum to either starved or serum-restricted cells was preceded by a rapid drop in cAMP level. Cellular cAMP levels increased to a moderate extent as sparse cultures first increased in density, but did not continue to rise as the culture approached saturation density. cGMP levels were inversely related to cell density: much higher cellular cGMP levels were found at low density than at higher cell density, whether cells were rapidly proliferating under standard growth conditions or had their growth arrested by omission of medium change or restriction of serum. Thus, under these conditions the steady state levels of cGMP appear to be related to cell density rather than rate of cell proliferation. However, a transient but appreciable increase in cGMP did occur upon the addition of fresh medium containing 10% serum to starved or serum-restricted cells, a condition leading to reinitiation of cell proliferation. Smaller but significant increases in cGMP were also evident following routine addition of fresh medium with serum to growing cells fed every other day and following mild EDTA-trypsin treatment of confluent WI38 fibroblasts. Thus, at least dual control mechanisms appear to be involved in the regulation of cGMP levels. Comparison of mid- and late-passage WI38 cells revealed no significant differences either in the levels of cGMP at sparse densities or in the density-dependent change in levels. These results suggest that levels of both cAMP and cGMP are influenced by cell density and also by conditions which alter the rate of cell proliferation.  相似文献   

7.
Taurine produced no effect on the cyclic nucleotides level in the heart of intact rats but sharply inhibited the cAMP and cGMP level elevation in the rat heart occuring in stress. After atropine pretreatment of the animals no effect of taurine on the heart cGMP level was observed; its effect on the cAMP level was significantly inhibited against the background of partial beta-adrenoreceptors block. It is suggested that taurine is a nonspecific regulator of the myocardial cells sensitivity to the biologically active drugs.  相似文献   

8.
Male and female rats were given oestradiol benzoate (1 mg s.c. twice a week for 3 weeks) and/or sodium nitroprusside (SN), a donor of nitric oxide (NO), which was administered in their food in amounts of 0.2 or 0.6 mg/rat/day. Neither oestradiol-induced hypertrophy of the hypophysis, nor the serum prolactin (PRL) level, was affected by the simultaneous administration of SN. The PRL content of the hypophysis rose after oestradiol in the males, but the increase was again uninfluenced by the simultaneous administration of SN and the cAMP content of the hypophysis--raised after oestradiol--was likewise unaffected. The amount of cGMP in the hypophysis after oestradiol rose only in males. Both the serum and the hypophyseal prolactin level were found to be correlated to the cAMP and the cGMP content of the hypophysis. It was found that the simultaneous administration of SN together with oestradiol slightly reduced the increase in the cGMP content of the hypophysis elicited with oestradiol treatment only.  相似文献   

9.
I E Sadokova 《Ontogenez》1989,20(1):63-69
Abnormal cleavage, decrease in the intracellular cAMP and cGMP content and a trend for increase of extracellular cAMP content were observed in sea urchin embryos incubated with KIuR-14 serotoninolytic substance. The addition of serotonin leads to normalization of cleavage and cAMP and cGMP content. It suggests serotonin-specific effect of KIuR-14 and functional relations between serotonin and cyclic nucleotides.  相似文献   

10.
Plasma alpha-atrial natriuretic peptide (alpha-ANP) concentration and levels of cyclic nucleotides [guanosine 3',5'-cyclic monophosphate (cGMP) and adenosine 3',5'-cyclic monophosphate (cAMP)] were studied in 23 runners before and after a marathon race. Blood samples were drawn from an antecubital vein the morning before the race (base line), at 3 P.M. (i.e., 2 h before the start), on arrival, and 12 and 36 h and 7 days later. Compared with the base-line values of plasma alpha-ANP (5 pmol/l), cGMP (3.8 nmol/l), and cAMP (15.8 nmol/l), the plasma levels of alpha-ANP, cGMP, and cAMP were increased immediately after the marathon, respectively, to 12.0 pmol/l, 12.7 nmol/l, and 50.5 nmol/l. The increase in the plasma alpha-ANP concentration was related (r = 0.85; P less than 0.001) to the changes in plasma cGMP, plasma lactate, hematocrit, and body weight. The plasma cGMP and cAMP concentrations had returned to the prerace levels 12 h after the marathon, whereas the plasma alpha-ANP concentration was significantly lower (3.1 pmol/l) than the base-line values and increased above the prerace values 36 h (7.5 pmol/l) and 7 days (6.8 pmol/l) after the marathon. The plasma cGMP level was also higher 36 h (5.4 nmol/l) and 7 days (5.0 nmol/l) after the marathon race.  相似文献   

11.
The effects of oxytocin and methacholine on cyclic nucleotide levels in estrogen-primed rabbit myometrium were studied in the presence and absence of 1-methyl-3-isobutyl xanthine (MIX), a phosphodiesterase inhibitor. In the absence of MIX, methacholine increased guanosine 3',5'-cyclic monophosphate (cGMP) levels at a time when contraction was decreasing, but had no influence on adenosine 3',5'-cyclic monophosphate (cAMP) levels. In contrast, oxytocin did not elevate cGMP, but rapidly decreased cAMP levels. MIX (1 mM) increased both cAMP and cGMP levels. Oxytocin or methacholine further increased cGMP, indicating activation of guanylate cyclase. Oxytocin- but not methacholine-induced stimulation of guanylate cyclase was abolished in Ca2+-free solution. Oxytocin increased cAMP over the levels produced by MIX alone, whereas methacholine decreased cAMP below the MIX control values; these effects were insensitive to indomethacin. Tissue levels of cGMP and cAMP did not directly correlate with isometric tension. The results also indicate that both oxytocin and methacholine stimulate guanylate cyclase but have opposing effects on adenylate cyclase of rabbit myometrium.  相似文献   

12.
Adenosine influence on cAMP and cGMP levels in cortex, hypothalamus, hippocampus and cerebellum was studied. It was established that adenosine and inhibitor of its reuptake--dipyridamole change cyclic nucleotide levels in some structures of brain (intraperitoneal injection). It was shown that cAMP and cGMP were in reciprocal relations in cortex, but not in hypothalamus, hippocampus and cerebellum.  相似文献   

13.
The levels of cGMP and cAMP were measured in the fasciculata-reticularis zona of the adrenal cortex in both intact and hypophysectomized young adult male rats. After administration of a single dose of dexamethasone to intact rats, cGMP levels were elevated 2–4 fold after 4hr and returned to control level after 8hr. At the same time, cAMP concentrations were moderately lowered. In hypophysectomized rats dexamethasone administration was followed by a similar increase in the cGMP level, the basal cAMP concentrations were not altered by dexamethasone. Our data suggest that dexamethasone might have a direct effect on cGMP concentration in the adrenal cortex of the rat.  相似文献   

14.
The levels of serum potassium, blood glucose, and plasma adenosine cyclic 3':5'-monophosphate (cAMP) and guanosine cyclic 3':5'-monophosphate (cGMP) were studied after the portal vein injection of cyclic nucleotides and their derivatives, (cAMP, cGMP, N6, O2'-dibutyryl adenosine 3':5'-monophosphate (DBcAMP), N6-monobutyryl adenosine cyclic 3':5'-monophosphate (NMBcAMP), and O2'-monobutyryl adenosine cyclic 3':5'-monophosphate (OMBcAMP), into dogs. Dose-related hyperglycemic responses were observed after the injection of DBcAMP (1-8 mg/kg). Transient and prominent hyperkalemia and hyperglycemia were caused by the injection of DBcAMP, NMBcAMP, and OMBcAMP (4 mg/kg). The hyperkalemic response was highest with NMBcAMP (1.22 mequiv./L), followed by OMBcAMP (0.64), DBcAMP (0.54), cGMP (0.47), and cAMP (0.41), whereas the hyperglycemic response was highest with NMBcAMP (146 mg/100 mL), followed by DBcAMP (93.6), OMBcAMP (77.1), and cAMP (56.0), and there was only a slight change with cGMP (28.4) compared with the control. The plasma level of cAMP was maximal with DBcAMP (1.92 nmol/mL), followed by NMBcAMP (1.28) and OMBcAMP (0.76), whereas the plasma levels of cGMP showed no evident change, except that caused by DBcAMP (0.27). Of the cyclic nucleotides tested, NMBcAMP was found to be most potent in causing both hyperkalemia and hyperglycemia. Based on these results, possible correlations between hyperkalemia, hyperglycemia, and plasma levels of cAMP and cGMP are discussed.  相似文献   

15.
The effects of cyclic nucleotides on elastin synthesis were studied in ligamentum nuchae fibroblasts by adding exogenous cyclic nucleotide derivatives or beta-adrenergic agents to cell culture medium. Elastin synthesis was enhanced (approximately 80%) by dibutyryl cGMP (Bt2cGMP) in concentrations ranging from 0.01 to 100 nM. Two other cGMP derivatives, 8-bromoguanosine 3':5'-cyclic monophosphate (8-Br-cGMP) and 2'-deoxy-cGMP, were also potent stimulators of elastin synthesis. In the absence of calcium, basal elastin production was substantially decreased (40% of control) and cGMP analogs no longer stimulated elastin synthesis, suggesting a role for calcium in the cGMP response. Bt2cAMP had no demonstrable effect on elastin production except at high concentrations which produced a nonspecific decrease equivalent to the decrease in total protein synthesis. Similarly, elevation of endogenous cellular cAMP levels by beta-adrenergic stimulation produced no change in elastin production. When 8-Br-cGMP was added to cells together with Bt2cAMP, cGMP-dependent stimulation of elastin production was abolished by cAMP in a dose-dependent fashion. These results suggest a coordinated means by which elastin production is controlled in ligament cells, i.e. increased cGMP levels lead to a stimulation of elastin production that is reversed by cAMP.  相似文献   

16.
The content of hepatic cyclic AMP was increased soon after intoxication by white phosphorus. Its level reached a maximum 4 h after poisoning, but in subsequent phases tended to return to normal. In contrast, the cyclic GMP concentration was altered only 24 and 36 h after treatment with the same hepatotoxin. Similar modifications of cAMP and cGMP content were also detected after poisoning by trichlorobromomethane (CBrCl3). As a consequence, an altered cGMP/cAMP ratio was found in both experimental conditions. Further, the modification of cAMP content after white phosphorus was detected prior to liver damage (steatosis and necrosis), while the highest concentration of the cyclic nucleotide in CBrCl3-poisoned rats was found when fatty liver was already evident. In addition, in phosphorus-poisoned rats, the hepatic content of Ca2+ was found to be unmodified during all phases of the intoxication, while after CBrCl3 a phasic increase of the Ca2+ level was observed at 4, 24 and 36 h.  相似文献   

17.
K A Bonnet 《Life sciences》1975,16(12):1877-1882
Systemic morphine briefly elevated the caudate cyclic AMP level and subsequently depressed those levels in the substantia nigra and hypothalamus. Thalamic cAMP was unaffected within sixty minutes of the injection. Cyclic GMP was reduced in all four structures by thirty minutes. Tolerant animals evidenced increased cAMP levels in all but the hypothalamus and reduced cGMP in all four structures. A challenge injection of morphine elevated the two nucleotides briefly in the substantia nigra, depressed only cAMP in the hypothalamus and did not alter levels in the other structures.  相似文献   

18.
Carbachol in the presence of atropine and propranolol was employed to stimulate a non-adrenergic neural inhibitory system in the hemilung of the bullfrog (Rana catesbeiana). Tissue levels of cGMP were elevated 95% by carbachol whilst cAMP levels were unchanged. The phosphodiesterase inhibitor papaverine did not affect either cAMP or cGMP levels, but did selectively increase the carbachol-induced increase in lung cGMP to 220% of control levels. Papaverine did not potentiate the relaxant effects of carbachol. The results suggest that cyclic nucleotides may not be directly involved in the relaxation produced by stimulation of the non-adrenergic neural inhibitory system in this preparation.  相似文献   

19.
The experiments on rats have proved that ulcerative lesions in the gastric mucosa influenced by intraperitoneal catecholamines (noradrenaline and adrenaline) develop on the background of pronounced decrease of cAMP level in the gastric mucosa during ulceration and relatively slight fluctuations of cGMP level. As a result, cAMP/cGMP ratio in mucosa was significantly decreased during ulceration. These changes in cAMP level and cAMP/cGMP ratio may play an important role in destabilization of lysosomal membranes followed by a chain of pathological reactions resulting in ulcerative lesions of the gastric mucosa.  相似文献   

20.
R. Gaion  G. Krishna 《Life sciences》1983,32(6):571-576
The interaction between calcium ionophore A23187 and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) has been studied at the level of cyclic-AMP (cAMP), cyclic-GMP (cGMP) and lipolysis in isolated rat fat cells. Ionophore A23187 (1–10 μM) stimulated cGMP accumulation and glycerol release without affecting cAMP level. FCCP (1–100 μM) inhibited the effect of A23187 on cGMP level and glycerol release, but did not affect or increase cAMP. Thus a correlation exists between the changes of cGMP levels and lipolysis and a dissociation of lipolysis from cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号