首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time- and voltage-dependent components of Kv4.3 inactivation   总被引:6,自引:0,他引:6  
Kv4.3 inactivation is a complex multiexponential process, which can occur from both closed and open states. The fast component of inactivation is modulated by the N-terminus, but the mechanisms mediating the other components of inactivation are controversial. We studied inactivation of Kv4.3 expressed in Xenopus laevis oocytes, using the two-electrode voltage-clamp technique. Inactivation during 2000 ms pulses at potentials positive to the activation threshold was described by three exponents (46 +/- 3, 152 +/- 13, and 930 +/- 50 ms at +50 mV, n = 7) whereas closed-state inactivation (at potentials below threshold) was described by two exponents (1079 +/- 119 and 3719 +/- 307 ms at -40 mV, n = 9). The fast component of open-state inactivation was dominant at potentials positive to -20 mV. Negative to -30 mV, the intermediate and slow components dominated inactivation. Inactivation properties were dependent on pulse duration. Recovery from inactivation was strongly dependent on voltage and pulse duration. We developed an 11-state Markov model of Kv4.3 gating that incorporated a direct transition from the open-inactivated state to the closed-inactivated state. Simulations with this model reproduced open- and closed-state inactivation, isochronal inactivation relationships, and reopening currents. Our data suggest that inactivation can proceed primarily from the open state and that multiple inactivation components can be identified.  相似文献   

2.
Kv4 channels mediate the somatodendritic A-type K+ current (I(SA)) in neurons. The availability of functional Kv4 channels is dynamically regulated by the membrane potential such that subthreshold depolarizations render Kv4 channels unavailable. The underlying process involves inactivation from closed states along the main activation pathway. Although classical inactivation mechanisms such as N- and P/C-type inactivation have been excluded, a clear understanding of closed-state inactivation in Kv4 channels has remained elusive. This is in part due to the lack of crucial information about the interactions between gating charge (Q) movement, activation, and inactivation. To overcome this limitation, we engineered a charybdotoxin (CTX)-sensitive Kv4.2 channel, which enabled us to obtain the first measurements of Kv4.2 gating currents after blocking K+ conduction with CTX (Dougherty and Covarrubias. 2006J. Gen. Physiol. 128:745-753). Here, we exploited this approach further to investigate the mechanism that links closed-state inactivation to slow Q-immobilization in Kv4 channels. The main observations revealed profound Q-immobilization at steady-state over a range of hyperpolarized voltages (-110 to -75 mV). Depolarization in this range moves <5% of the observable Q associated with activation and is insufficient to open the channels significantly. The kinetics and voltage dependence of Q-immobilization and ionic current inactivation between -153 and -47 mV are similar and independent of the channel's proximal N-terminal region (residues 2-40). A coupled state diagram of closed-state inactivation with a quasi-absorbing inactivated state explained the results from ionic and gating current experiments globally. We conclude that Q-immobilization and closed-state inactivation at hyperpolarized voltages are two manifestations of the same process in Kv4.2 channels, and propose that inactivation in the absence of N- and P/C-type mechanisms involves desensitization to voltage resulting from a slow conformational change of the voltage sensors, which renders the channel's main activation gate reluctant to open.  相似文献   

3.
The mechanisms of inactivation gating of the neuronal somatodendritic A-type K(+) current and the cardiac I(to) were investigated in Xenopus oocyte macropatches expressing Kv4.1 and Kv4.3 channels. Upon membrane patch excision (inside-out), Kv4.1 channels undergo time-dependent acceleration of macroscopic inactivation accompanied by a parallel partial current rundown. These changes are readily reversible by patch cramming, suggesting the influence of modulatory cytoplasmic factors. The consequences of these perturbations were investigated in detail to gain insights into the biophysical basis and mechanisms of inactivation gating. Accelerated inactivation at positive voltages (0 to +110 mV) is mainly the result of reducing the time constant of slow inactivation and the relative weight of the slow component of inactivation. Concomitantly, the time constants of closed-state inactivation at negative membrane potentials (-90 to -50 mV) are substantially decreased in inside-out patches. Deactivation is moderately accelerated, and recovery from inactivation and the peak G--V curve exhibit little or no change. In agreement with more favorable closed-state inactivation in inside-out patches, the steady-state inactivation curve exhibits a hyperpolarizing shift of approximately 10 mV. Closed-state inactivation was similarly enhanced in Kv4.3. An allosteric model that assumes significant closed-state inactivation at all relevant voltages can explain Kv4 inactivation gating and the modulatory changes.  相似文献   

4.
Internal Mg2+ blocks many potassium channels including Kv1.5. Here, we show that internal Mg2+ block of Kv1.5 induces voltage-dependent current decay at strongly depolarised potentials that contains a component due to acceleration of C-type inactivation after pore block. The voltage-dependent current decay was fitted to a bi-exponential function (tau(fast) and tau(slow)). Without Mg2+, tau(fast) and tau(slow) were voltage-independent, but with 10 mM Mg2+, tau(fast) decreased from 156 ms at +40 mV to 5 ms at +140 mV and tau(slow) decreased from 2.3 s to 206 ms. With Mg2+, tail currents after short pulses that allowed only the fast phase of decay showed a rising phase that reflected voltage-dependent unbinding. This suggested that the fast phase of voltage-dependent current decay was due to Mg2+ pore block. In contrast, tail currents after longer pulses that allowed the slow phase of decay were reduced to almost zero suggesting that the slow phase was due to channel inactivation. Consistent with this, the mutation R487V (equivalent to T449V in Shaker) or increasing external K+, both of which reduce C-type inactivation, prevented the slow phase of decay. These results are consistent with voltage-dependent open-channel block of Kv1.5 by internal Mg2+ that subsequently induces C-type inactivation by restricting K+ filling of the selectivity filter from the internal solution.  相似文献   

5.
Kv4 channels represent the main class of brain A-type K+ channels that operate in the subthreshold range of membrane potentials (Serodio, P., E. Vega-Saenz de Miera, and B. Rudy. 1996. J. Neurophysiol. 75:2174- 2179), and their function depends critically on inactivation gating. A previous study suggested that the cytoplasmic NH2- and COOH-terminal domains of Kv4.1 channels act in concert to determine the fast phase of the complex time course of macroscopic inactivation (Jerng, H.H., and M. Covarrubias. 1997. Biophys. J. 72:163-174). To investigate the structural basis of slow inactivation gating of these channels, we examined internal residues that may affect the mutually exclusive relationship between inactivation and closed-state blockade by 4-aminopyridine (4-AP) (Campbell, D.L., Y. Qu, R.L. Rasmussen, and H.C. Strauss. 1993. J. Gen. Physiol. 101:603-626; Shieh, C.-C., and G.E. Kirsch. 1994. Biophys. J. 67:2316-2325). A double mutation V[404,406]I in the distal section of the S6 region of the protein drastically slowed channel inactivation and deactivation, and significantly reduced the blockade by 4-AP. In addition, recovery from inactivation was slightly faster, but the pore properties were not significantly affected. Consistent with a more stable open state and disrupted closed state inactivation, V[404,406]I also caused hyperpolarizing and depolarizing shifts of the peak conductance-voltage curve ( approximately 5 mV) and the prepulse inactivation curve (>10 mV), respectively. By contrast, the analogous mutations (V[556,558]I) in a K+ channel that undergoes N- and C-type inactivation (Kv1.4) did not affect macroscopic inactivation but dramatically slowed deactivation and recovery from inactivation, and eliminated open-channel blockade by 4-AP. Mutation of a Kv4-specific residue in the S4-S5 loop (C322S) of Kv4.1 also altered gating and 4-AP sensitivity in a manner that closely resembles the effects of V[404, 406]I. However, this mutant did not exhibit disrupted closed state inactivation. A kinetic model that assumes coupling between channel closing and inactivation at depolarized membrane potentials accounts for the results. We propose that components of the pore's internal vestibule control both closing and inactivation in Kv4 K+ channels.  相似文献   

6.
Inactivation of Kv2.1 potassium channels.   总被引:8,自引:0,他引:8       下载免费PDF全文
We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent (tau = 4 s at 0 mV; tau = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid (tau = 0.27 s at -140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon "excessive cumulative inactivation." These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.  相似文献   

7.
We havedetermined the effects of coexpression of Kv2.1 with electricallysilent Kv5.1 or Kv6.1 -subunits inXenopus oocytes on channel gating.Kv2.1/5.1 selectively accelerated the rate of inactivation atintermediate potentials (30 to 0 mV), without affecting the rateat strong depolarization (0 to +40 mV), and markedly accelerated therate of cumulative inactivation evoked by high-frequency trains ofshort pulses. Kv5.1 coexpression also slowed deactivation of Kv2.1. Incontrast, Kv6.1 was much less effective in speeding inactivation atintermediate potentials, had a slowing effect on inactivation at strongdepolarizations, and had no effect on cumulative inactivation. Kv6.1,however, had profound effects on activation, including a negative shift of the steady-state activation curve and marked slowing of deactivation tail currents. Support for the notion that the Kv5.1's effects stemfrom coassembly of -subunits into heteromeric channels was obtainedfrom biochemical evidence of protein-protein interaction andsingle-channel measurements that showed heterogeneity in unitary conductance. Our results show that Kv5.1 and Kv6.1 function as regulatory -subunits that when coassembled with Kv2.1 can modulate gating in a physiologically relevant manner.

  相似文献   

8.
Evidence from both human and murine cardiomyocytes suggests that truncated isoforms of Kv1.5 can be expressed in vivo. Using whole-cell patch-clamp recordings, we have characterized the activation and inactivation properties of Kv1.5DeltaN209, a naturally occurring short form of human Kv1.5 that lacks roughly 75% of the T1 domain. When expressed in HEK 293 cells, this truncated channel exhibited a V(1/2) of -19.5 +/- 0.9 mV for activation and -35.7 +/- 0.7 mV for inactivation, compared with a V(1/2) of -11.2 +/- 0.3 mV for activation and -0.9 +/- 1.6 mV for inactivation in full-length Kv.15. Kv1.5DeltaN209 channels exhibited several features rarely observed in voltage-gated K(+) channels and absent in full-length Kv1.5, including a U-shaped voltage dependence of inactivation and "excessive cumulative inactivation," in which a train of repetitive depolarizations resulted in greater inactivation than a continuous pulse. Kv1.5DeltaN209 also exhibited a stronger voltage dependence to recovery from inactivation, with the time to half-recovery changing e-fold over 30 mV compared with 66 mV in full-length Kv1.5. During trains of human action potential voltage clamps, Kv1.5DeltaN209 showed 30-35% greater accumulated inactivation than full-length Kv1.5. These results can be explained with a model based on an allosteric model of inactivation in Kv2.1 (Klemic, K.G., C.-C. Shieh, G.E. Kirsch, and S.W. Jones. 1998. Biophys. J. 74:1779-1789) in which an absence of the NH(2) terminus results in accelerated inactivation from closed states relative to full-length Kv1.5. We suggest that differential expression of isoforms of Kv1.5 may contribute to K(+) current diversity in human heart and many other tissues.  相似文献   

9.
A transformed line of human embryonic kidney epithelial cells (HEK 293) is commonly used as an expression system for exogenous ion channel genes. Previously, it has been shown that these cells contain mRNAs for a variety of ion channels. Expression of some of these genes has been confirmed at the protein level. Patch-clamp electrophysiology experiments confirm the presence of multiple ion channels and molecular data agree with pharmacological profiles of identified channels. In this work, we show that endogenous voltage-gated potassium channels in HEK cells are a significant source of outward current at positive potentials. We show that both non-transfected HEK cells and HEK cells transfected with hyperpolarization-activated cyclic-nucleotide gated (HCN) channels have a significant amount of voltage-gated potassium (K(V)) current when certain tail current voltage-clamp protocols are used to assay HCN current activation. Specifically, tail current protocols that use a depolarized holding potential of -40 mV followed by hyperpolarizing pulses (-80 to -140 mV) and then a tail pulse potential of +20 mV indicate K(V) channels undergo closed-state inactivation at the more depolarized holding potential of -40 mV, followed by recovery from inactivation (but no activation) at hyperpolarizing potentials and high amount of activation at the positive tail potential. Our results indicate that pulse protocols with positive tail pulses are inaccurate assays for HCN current in certain HEK cells. Surprisingly, HEK-293 cells were found to contain mRNA for HCN2 and HCN3 although we have not detected a significant and consistent endogenous I(f)-like current in these cells.  相似文献   

10.
We previously concluded that the Kv2.1 K(+) channel inactivates preferentially from partially activated closed states. We report here that the Kv3.1 channel also exhibits two key features of this inactivation mechanism: a U-shaped voltage dependence measured at 10 s and stronger inactivation with repetitive pulses than with a single long depolarization. More surprisingly, slow inactivation of the Kv1 Shaker K(+) channel (Shaker B Delta 6--46) also has a U-shaped voltage dependence for 10-s depolarizations. The time and voltage dependence of recovery from inactivation reveals two distinct components for Shaker. Strong depolarizations favor inactivation that is reduced by K(o)(+) or by partial block by TEA(o), as previously reported for slow inactivation of Shaker. However, depolarizations near 0 mV favor inactivation that recovers rapidly, with strong voltage dependence (as for Kv2.1 and 3.1). The fraction of channels that recover rapidly is increased in TEA(o) or high K(o)(+). We introduce the term U-type inactivation for the mechanism that is dominant in Kv2.1 and Kv3.1. U-type inactivation also makes a major but previously unrecognized contribution to slow inactivation of Shaker.  相似文献   

11.
DPP10 is an inactivation modulatory protein of Kv4.3 and Kv1.4   总被引:3,自引:0,他引:3  
Voltage-gated K+ channels exist in vivo as multiprotein complexes made up of pore-forming and ancillary subunits. To further our understanding of the role of a dipeptidyl peptidase-related ancillary subunit, DPP10, we expressed it with Kv4.3 and Kv1.4, two channels responsible for fast-inactivating K+ currents. Previously, DPP10 has been shown to effect Kv4 channels. However, Kv1.4, when expressed with DPP10, showed many of the same effects as Kv4.3, such as faster time to peak current and negative shifts in the half-inactivation potential of steady-state activation and inactivation. The exception was recovery from inactivation, which is slowed by DPP10. DPP10 expressed with Kv4.3 caused negative shifts in both steady-state activation and inactivation of Kv4.3, but no significant shifts were detected when DPP10 was expressed with Kv4.3 + KChIP2b (Kv channel interacting protein). DPP10 and KChIP2b had different effects on closed-state inactivation. At –60 mV, KChIP2b nearly abolishes closed-state inactivation in Kv4.3, whereas it developed to a much greater extent in the presence of DPP10. Finally, expression of a DPP10 mutant consisting of its transmembrane and cytoplasmic 58 amino acids resulted in effects on Kv4.3 gating that were nearly identical to those of wild-type DPP10. These data show that DPP10 and KChIP2b both modulate Kv4.3 inactivation but that their primary effects are on different inactivation states. Thus DPP10 may be a general modulator of voltage-gated K+ channel inactivation; understanding its mechanism of action may lead to deeper understanding of the inactivation of a broad range of K+ channels. potassium channel inactivation; potassium channel ancillary subunits; closed-state inactivation; voltage-gated potassium channels  相似文献   

12.
Ferret atrial myocytes can display an E-4031-sensitive current (IKr) that is similar to that previously described for guinea pig cardiac myocytes. We examined the ferret atrial IKr as the E-4031-sensitive component of current using the amphotericin B perforated patch-clamp technique. Steady-state IKr during depolarizing pulses showed characteristic inward rectification. Activation time constants during a single pulse were voltage dependent, consistent with previous studies. However, for potentials positive to +30 mV, IKr time course became complex and included a brief transient component. We examined the envelope of tails of the drug-sensitive current for activation in the range -10 to +50 mV and found that the tail currents for IKr do not activate with the same time course as the current during the depolarizing pulse. The activation time course determined from tail currents was relatively voltage insensitive over the range +30 to +50 mV (n = 5), but was voltage sensitive for potentials between -10 and +30 mV and appeared to show some sigmoidicity in this range. These data indicate that activation of IKr occurs in at least two steps, one voltage sensitive and one voltage insensitive, the latter of which becomes rate limiting at positive potentials. We also examined the rapid time-dependent inactivation process that mediates rectification at positive potentials. The time constants for this process were only weakly voltage dependent over the range of potentials from -50 to +60 mV. From these data we constructed a simple linear four-state model that reproduces the general features of ferret IKr, including the initial transient at positive potentials and the apparent discrepancy between the currents during the initial depolarizing pulse and the tail current.  相似文献   

13.
We have examined the kinetics of whole-cell T-current in HEK 293 cells stably expressing the alpha1G channel, with symmetrical Na(+)(i) and Na(+)(o) and 2 mM Ca(2+)(o). After brief strong depolarization to activate the channels (2 ms at +60 mV; holding potential -100 mV), currents relaxed exponentially at all voltages. The time constant of the relaxation was exponentially voltage dependent from -120 to -70 mV (e-fold for 31 mV; tau = 2.5 ms at -100 mV), but tau = 12-17 ms from-40 to +60 mV. This suggests a mixture of voltage-dependent deactivation (dominating at very negative voltages) and nearly voltage-independent inactivation. Inactivation measured by test pulses following that protocol was consistent with open-state inactivation. During depolarizations lasting 100-300 ms, inactivation was strong but incomplete (approximately 98%). Inactivation was also produced by long, weak depolarizations (tau = 220 ms at -80 mV; V(1/2) = -82 mV), which could not be explained by voltage-independent inactivation exclusively from the open state. Recovery from inactivation was exponential and fast (tau = 85 ms at -100 mV), but weakly voltage dependent. Recovery was similar after 60-ms steps to -20 mV or 600-ms steps to -70 mV, suggesting rapid equilibration of open- and closed-state inactivation. There was little current at -100 mV during recovery from inactivation, consistent with 相似文献   

14.
The molecular and biophysical mechanisms by which voltage-sensitive K+ (Kv)4 channels inactivate and recover from inactivation are presently unresolved. There is a general consensus, however, that Shaker-like N- and P/C-type mechanisms are likely not involved. Kv4 channels also display prominent inactivation from preactivated closed states [closed-state inactivation (CSI)], a process that appears to be absent in Shaker channels. As in Shaker channels, voltage sensitivity in Kv4 channels is thought to be conferred by positively charged residues localized to the fourth transmembrane segment (S4) of the voltage-sensing domain. To investigate the role of S4 positive charge in Kv4.3 gating transitions, we analyzed the effects of charge elimination at each positively charged arginine (R) residue by mutation to the uncharged residue alanine (A). We first demonstrated that R290A, R293A, R296A, and R302A mutants each alter basic activation characteristics consistent with positive charge removal. We then found strong evidence that recovery from inactivation is coupled to deactivation, showed that the precise location of the arginine residues within S4 plays an important role in the degree of development of CSI and recovery from CSI, and demonstrated that the development of CSI can be sequentially uncoupled from activation by R296A, specifically. Taken together, these results extend our current understanding of Kv4.3 gating transitions. voltage-sensitive potassium channel; Shaker; closed-state inactivation  相似文献   

15.
Mechanisms underlying Kv4 channel inactivation and recovery are presently unclear, although there is general consensus that the basic characteristics of these processes are not consistent with Shaker (Kv1) N- and P/C-type mechanisms. Kv4 channels also differ from Shaker in that they can undergo significant inactivation from pre-activated closed-states (closed-state inactivation, CSI), and that inactivation and recovery kinetics can be regulated by intracellular KChIP2 isoforms. To gain insight into the mechanisms regulating Kv4.3 CSI and recovery, we have analyzed the effects of increasing [K(+)](o) from 2 mM to 98 mM in the absence and in the presence of KChIP2b, the major KChIP2 isoform expressed in the mammalian ventricle. In the absence of KChIP2b, high [K(+)](o) promoted Kv4.3 inactivated closed-states and significantly slowed the kinetics of recovery from both macroscopic and closed-state inactivation. Coexpression of KChIP2b in 2 mM [K(+)](o) promoted non-inactivated closed-states and accelerated the kinetics of recovery from both macroscopic and CSI. In high [K(+)](o), KChIP2b eliminated or significantly reduced the slowing effects on recovery. Attenuation of CSI by the S4 charge-deletion mutant R302A, which produced significant stabilization of non-inactivated closed-states, effectively eliminated the opposing effects of high [K(+)](o) and KChIP2b on macroscopic recovery kinetics, confirming that these results were due to alterations of CSI. Elevated [K(+)](o) therefore slows Kv4.3 recovery by stabilizing inactivated closed-states, while KChIP2b accelerates recovery by destabilizing inactivated closed-states. Our results challenge underlying assumptions of presently popular Kv4 gating models and suggest that Kv4.3 possesses novel allosteric mechanisms, which are absent in Shaker, for coupling interactions between intracellular KChIP2b binding motifs and extracellular K(+)-sensitive regulatory sites.  相似文献   

16.
In many voltage-gated K(+) channels, N-type inactivation significantly accelerates the onset of C-type inactivation, but effects on recovery from inactivation are small or absent. We have exploited the Na(+) permeability of C-type-inactivated K(+) channels to characterize a strong interaction between the inactivation peptide of Kv1.4 and the C-type-inactivated state of Kv1.4 and Kv1.5. The presence of the Kv1.4 inactivation peptide results in a slower decay of the Na(+) tail currents normally observed through C-type-inactivated channels, an effective blockade of the peak Na(+) tail current, and also a delay of the peak tail current. These effects are mimicked by addition of quaternary ammonium ions to the pipette-filling solution. These observations support a common mechanism of action of the inactivation peptide and intracellular quaternary ammonium ions, and also demonstrate that the Kv channel inner vestibule is cytosolically exposed before and after the onset of C-type inactivation. We have also examined the process of N-type inactivation under conditions where C-type inactivation is removed, to compare the interaction of the inactivation peptide with open and C-type-inactivated channels. In C-type-deficient forms of Kv1.4 or Kv1.5 channels, the Kv1.4 inactivation ball behaves like an open channel blocker, and the resultant slowing of deactivation tail currents is considerably weaker than observed in C-type-inactivated channels. We present a kinetic model that duplicates the effects of the inactivation peptide on the slow Na(+) tail of C-type-inactivated channels. Stable binding between the inactivation peptide and the C-type-inactivated state results in slower current decay, and a reduction of the Na(+) tail current magnitude, due to slower transition of channels through the Na(+)-permeable states traversed during recovery from inactivation.  相似文献   

17.
Liu M  Gong B  Qi Z 《Cell biology international》2008,32(12):1514-1520
The Kv2.1 potassium channel is a principal component of the delayed rectifier I(K) current in the pyramidal neurons of cortex and hippocampus. We used whole-cell patch-clamp recording techniques to systemically compare the electrophysiological properties between the native neuronal I(K) current of cultured rat hippocampal neurons and the cloned Kv2.1 channel currents in the CHO cells. The slope factors for the activation curves of both currents obtained at different prepulse holding potentials and holding times were similar, suggesting similar voltage-dependent gating. However, the half-maximal activation voltage for I(K) was approximately 20 mV more negative than the Kv2.1 channel in CHO cells at a given prepulse condition, indicating that the neuronal I(K) current had a lower threshold for activation than that of the Kv2.1 channel. In addition, the neuronal I(K) showed a stronger holding membrane potential and holding time-dependence than Kv2.1. The Kv2.1 channel gave a U-shaped inactivation, while the I(K) current did not. The I(K) current also had much stronger voltage-dependent inactivation than Kv2.1. These results imply that the neuronal factors could make Kv2.1 channels easier to activate. The information obtained from these comparative studies help elucidate the mechanism of molecular regulation of the native neuronal I(K) current in neurons.  相似文献   

18.
Extracellular potassium modulates recovery from C-type inactivation of Kv1.3 in human T lymphocytes. The results of whole-cell patch clamp recordings show that there is a linear increase in recovery rate with increasing [K+]o. An increase from 5 to 150 mM K+o causes a sixfold acceleration of recovery rate at a holding potential of -90 mV. Our results suggest that 1) a low-affinity K+ binding site is involved in recovery, 2) the rate of recovery increases with hyperpolarization, 3) potassium must bind to the channel before inactivation to speed its recovery, and 4) recovery rate depends on external [K+] but not on the magnitude of the driving force through open channels. We present a model in which a bound K+ ion destabilizes the inactivated state to increase the rate of recovery of C-type inactivation, thereby providing a mechanism for autoregulation of K+ channel activity. The ability of K+ to regulate its own conductance may play a role in modulating voltage-dependent immune function.  相似文献   

19.
The recently cloned epithelial Ca(2+) channel, ECaC, which is expressed in the apical membrane of 1,25-dihydroxyvitamin D(3)-responsible epithelia, was characterized in Xenopus laevis oocytes by measuring the Ca(2+)-activated Cl(-) current which is a sensitive read-out of the Ca(2+) influx. ECaC-expressing oocytes responded to a voltage ramp with a maximal inward current of -2.1 +/- 0.3 microA at a holding potential of -99 +/- 1 mV. The inward current decreased progressively at less negative potentials and at +50 mV a small Ca(2+)-induced outward current was observed. The Ca(2+) influx-evoked current at a hyperpolarizing pulse to -100 mV displayed a fast activation followed by a rapid but partial inactivation. Loading of the oocytes with the Ca(2+) chelator BAPTA delayed the activation and blocked the inactivation of ECaC. When a series of brief hyperpolarizing pulses were given a significant decline in the peak response and subsequent plateau phase was observed. In conclusion, the distinct electrophysiological features of ECaC are hyperpolarization-dependent activation, Ca(2+)-dependent regulation of channel conductance and desensitization during repetitive stimulation.  相似文献   

20.
Voltage-gated K(+) channels of the Kv7 (KCNQ) family have important physiological functions in both excitable and nonexcitable tissue. The family encompasses five genes encoding the channel subunits Kv7.1-5. Kv7.1 is found in epithelial and cardiac tissue. Kv7.2-5 channels are predominantly neuronal channels and are important for controlling excitability. Kv7.1 channels have been considered the only Kv7 channels to undergo inactivation upon depolarization. However, here we demonstrate that inactivation is also an intrinsic property of Kv7.4 and Kv7.5 channels, which inactivate to a larger extent than Kv7.1 channels at all potentials. We demonstrate that at least 30% of these channels are inactivated at physiologically relevant potentials. The onset of inactivation is voltage dependent and occurs on the order of seconds. Both time- and voltage-dependent recovery from inactivation was investigated for Kv7.4 channels. A time constant of 1.47 +/- 0.21 s and a voltage constant of 54.9 +/- 3.4 mV were determined. It was further demonstrated that heteromeric Kv7.3/Kv7.4 channels had inactivation properties different from homomeric Kv7.4 channels. Finally, the Kv7 channel activator BMS-204352 was in contrast to retigabine found to abolish inactivation of Kv7.4. In conclusion, this work demonstrates that inactivation is a key regulatory mechanism of Kv7.4 and Kv7.5 channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号