首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome c′′ from Methylophilus methylotrophus contains a single haem with bis-histidine coordination which couples electron and proton transfer by reversible detachment of one of the axial ligands on reduction. 13C NMR of the haem substituents is now used to determine the orientations of the two histidine ligands of the ferricytochrome. The relative orientation of the ligands is found to be nearly perpendicular (an angle of 85±2° between the histidine planes was obtained), which is consistent with the near-axial g-tensor determined by EPR. Although the absolute orientation of the axial ligands is not well defined in the presence of near-axial symmetry, 13C NMR is found to be a useful complement to EPR for obtaining quantitative information for systems of this type. Received: 13 May 1996 / Accepted: 10 July 1996  相似文献   

2.
b and c with His, Met, and cyanide ligands. Variations in the electronic structure of the haem and the magnetic susceptibility tensors have been shown to depend primarily on the axial ligand geometry, and the shifts of haem substituents have been used to obtain the first structural information for several cytochromes. Recently, the database of assigned spectra for bis-His haems has been extended sufficiently for an empirical equation to be produced for treating 1H NMR data from haem methyl groups at 298 K. However, the database used contains large systematic deviations and the form of the equation leads to systematic errors in the ligand geometries. This article describes the link with the semi-empirical methods used previously and provides a set of corrected empirical parameters as well as an improved equation. The possibilities for generalising the empirical method to account for ligands other than His and temperatures other than 298 K are discussed. Received: 19 October 1999 / Accepted: 21 February 2000  相似文献   

3.
The low-temperature e.p.r. and m.c.d. (magnetic-circular-dichroism) spectra of Pseudomonas aeruginosa nitrite reductase, together with those of its partially and fully cyanide-bound derivatives, were investigated. The m.c.d. spectra in the range 600-2000 nm indicate that the native axial ligands to haem c are histidine and methionine, and furthermore that it is the methionine ligand that must be displaced before cyanide binding at this haem. The m.c.d. spectra in the range 1000-2000 nm contain no charge-transfer bands arising from low-spin ferric haem d1, a chlorin. New optical transitions in the region 700-850 nm were found for the cyanide adduct of haem d1. The g-values of haem d1 in the native enzyme are 2.51, 2.43 and 1.71, suggesting co-ordination by two histidine ligands in the oxidized state. There is clear evidence in the e.p.r. data of an interaction between the c and d1 haem groups. This is not apparent in the optical spectra. The results are interpreted in terms of haem groups that are remote from each other, their interaction being mediated through protein conformational changes. The possible implications of this in relation to reduction processes catalysed by the enzyme are considered.  相似文献   

4.
Experimental magnetic susceptibility tensors are reported for eight haems c with bis-His coordination. These data, obtained by fitting the dipolar shifts of backbone protons in the tetrahaem cytochromes c 3 from Desulfovibrio vulgaris and D. gigas, are analysed together with published values for other haem proteins. The x and y axes are found to rotate in the opposite sense to the axial ligands and are also counter-rotated with respect to the frontier molecular orbitals of the haem. The magnetic z-axis is close to the normal to the haem plane in each case. The magnitudes of the magnetic anisotropies are used to derive crystal field parameters and the rhombic splitting, V, is correlated with the dihedral angle between the axial ligands. Hence, it is apparent that the axial ligands are the dominant factor in determining the variation in magnetic properties between haems, and it is confirmed that “high g max” EPR signals are a reliable indicator of near-perpendicular ligands. These results are in full agreement with the analysis of non-Curie effects and electronic structure in the His-Met coordinated cytochromes c and c 551. Collectively, they show that the orientations of axial ligands to the haem may be estimated from single-crystal EPR data, from 13C NMR shifts of the haem substituents, or from NMR dipolar shifts of the polypeptide. Received: 3 September 1999 / Accepted: 10 December 1999  相似文献   

5.
A spectroscopic study of the flavocytochrome b enzyme, cellobiose oxidase, employing optical, NMR, EPR and near infra-red MCD techniques, has identified the axial ligands of the b-type haem. These are a histidine and a methionine, and this ligation set is discussed in relation to the functional role of the haem group.  相似文献   

6.
Bacillus megaterium flavocytochrome P450 BM3 is a catalytically self-sufficient fatty acid hydroxylase formed by fusion of soluble NADPH-cytochrome P450 reductase and P450 domains. Selected mutations at residue 264 in the haem (P450) domain of the enzyme lead to novel amino acid sixth (distal) co-ordination ligands to the haem iron. The catalytic, spectroscopic and thermodynamic properties of the A264M, A264Q and A264C variants were determined in both the intact flavocytochromes and haem domains of P450 BM3. Crystal structures of the mutant haem domains demonstrate axial ligation of P450 haem iron by methionine and glutamine ligands trans to the cysteine thiolate, creating novel haem iron ligand sets in the A264M/Q variants. In contrast, the crystal structure of the A264C variant reveals no direct interaction between the introduced cysteine side chain and the haem, although EPR data indicate Cys(264) interactions with haem iron in solution. The A264M haem potential is elevated by comparison with wild-type haem domain, and substrate binding to the A264Q haem domain results in a approximately 360 mV increase in potential. All mutant haem domains occupy the conformation adopted by the substrate-bound form of wild-type BM3, despite the absence of added substrate. The A264M mutant (which has higher dodecanoate affinity than wild-type BM3) co-purifies with a structurally resolved lipid. These data demonstrate that a single mutation at Ala(264) is enough to perturb the conformational equilibrium between substrate-free and substrate-bound P450 BM3, and provide firm structural and spectroscopic data for novel haem iron ligand sets unprecedented in nature.  相似文献   

7.
The unambiguous assignment of the nuclear magnetic resonance (NMR) signals of the alpha-substituents of the haems in the tetrahaem cytochrome isolated from Shewanella frigidimarina NCIMB400, was made using a combination of homonuclear and heteronuclear experiments. The paramagnetic (13)C shifts of the nuclei directly bound to the porphyrin of each haem group were analysed in the framework of a model for the haem electronic structure. The analysis yields g-tensors for each haem, which allowed the assignment of some electron paramagnetic resonance (EPR) signals to specific haems, and the orientation of the magnetic axes relative to each haem to be established. The orientation of the axial ligands of the haems was determined semi-empirically from the NMR data, and the structural results were compared with those of the homologous tetrahaem cytochrome from Shewanella oneidensis MR-1 showing significant similarities between the two proteins.  相似文献   

8.
The geometry of the axial ligands of the hemes in the triheme cytochrome PpcA from Geobacter sulfurreducens was determined in solution for the ferric form using the unambiguous assignment of the NMR signals of the α-substituents of the hemes. The paramagnetic 13C shifts of the hemes can be used to define the heme electronic structure, the geometry of the axial ligands, and the magnetic susceptibility tensor. The latter establishes the magnitude and geometrical dependence of the pseudocontact shifts, which are crucial to warrant reliable structural constraints for a detailed structural characterization of this paramagnetic protein in solution.  相似文献   

9.
Recently published chemical shifts for haem 13C nuclei in bovine ferricytochrome b 55 (Lee KB, Kweon J, Park H (1995) Assignment of hyperfine-shifted heme carbon resonances in ferricytochrome b 5. FEBS Lett. 367:77–80) are analysed in terms of haem molecular orbitals with perturbed D4h symmetry. Since a crystal structure of this protein is available, together with extensive 1H assignments both in the oxidised and reduced forms, the paramagnetic shifts can be separated into dipolar and Fermi contact contributions by using an empirical magnetic susceptibility tensor. The results are compared with the orientation of the tensor and the geometry of the haem ligands. This comparison casts doubt on one of the 13C assignments and demonstrates that the asymmetry of the haem electronic structure is dominated by the influence of both of the His ligands. The 13C chemical shifts of two haem methyl groups in the minor form of the protein, in which the haem is approximately rotated by 180° about its 5CH15CH axis, are also evaluated.  相似文献   

10.
Cytochrome c(3) is a 14 kDa tetrahaem protein that plays a central role in the bioenergetic metabolism of Desulfovibrio spp. This involves an energy transduction mechanism made possible by a complex network of functional cooperativities between redox and redox/protolytic centres (the redox-Bohr effect), which enables cytochrome c(3) to work as a proton activator. The three-dimensional structures of the oxidised and reduced Desulfovibrio gigas cytochrome c(3) in solution were solved using 2D (1)H-NMR data. The reduced protein structures were calculated using INDYANA, an extended version of DYANA that allows automatic calibration of NOE data. The oxidised protein structure, which includes four paramagnetic centres, was solved using the program PARADYANA, which also includes the structural paramagnetic parameters. In this case, initial structures were used to correct the upper and lower volume restraints for paramagnetic leakage, and angle restraints derived from (13)C Fermi contact shifts of haem moiety substituents were used for the axial histidine ligands. Despite the reduction of the NOE intensities by paramagnetic relaxation, the final family of structures is of similar precision and accuracy to that obtained for the reduced form. Comparison of the two structures shows that, although the global folds of the two families of structures are similar, significant localised differences occur upon change of redox state, some of which could not be detected by comparison with the X-ray structure of the oxidised state: (1) there is a redox-linked concerted rearrangement of Lys80 and Lys90 that results in the stabilisation of haem moieties II and III when both molecules are oxidised or both are reduced, in agreement with the previously measured positive redox cooperativity between these two haem moieties. This cooperativity regulates electron transfer, enabling a two-electron step adapted to the function of cytochromes c(3) as the coupling partner of hydrogenase; and (2) the movement of haem I propionate 13 towards the interior of the protein upon reduction explains the positive redox-Bohr effect, establishing the structural basis for the redox-linked proton activation mechanism necessary for energy conservation, driving ATP synthesis.  相似文献   

11.
12.
13.
Cytochrome b558 in the cytoplasmic membrane of Bacillus subtilis constitutes the anchor and electron acceptor to the flavoprotein (Fp) and iron-sulphur protein (Ip) in succinate:quinone oxidoreductase, and seemingly contains two haem groups. EPR and MCD spectroscopic data indicate bis-imidazole ligation of the haem. Apo-cytochrome was found in the membrane fraction of haem-deficient B. subtilis, suggesting that during biogenesis of the oxidoreductase the cytochrome b558 polypeptide is embedded into the membrane prior to the incorporation of haem and subsequent binding of Fp and Ip. The six His residues in cytochrome b558 were individually changed to Tyr to attempt identification of residues serving as haem axial ligands and to analyse the role of His residues for assembly and function of the oxidoreductase. From the properties of the mutants, His-47 can be excluded as a haem ligand. The remaining His residues (at positions 13, 28, 70, 113 and 155) are located in or close to four predicted transmembrane segments. The Tyr-28 and Tyr-70 mutant proteins appeared to lack one of the two haems. Only the Tyr-13 and Tyr-47 mutant cytochromes were found to function as anchors for Fp and Ip, but the Tyr-13 mutant cytochrome assembles into an enzymatically defective succinate:quinone oxidoreductase. It is concluded from a combination of the experimental findings, sequence comparisons and membrane topology data that His-28, His-70 and His-155 are probably haem axial ligands in a dihaem cytochrome b558. His-70 and His-155 may be ligands to the same haem.  相似文献   

14.
Desulfovibrio vulgaris Hildenborough cytochrome c3 contains four hemes in a low-spin state with bis-histidinyl coordination. High-spin forms of cytochrome c3 can be generated by protonation of the axial ligands in order to probe spin equilibrium (low-spin/high-spin). The spin alterations occurring at acid pH, the associated changes in redox potentials, as well as the reactivity towards external ligands were followed by the conjunction of square wave voltammetry and UV–visible, CD, NMR and EPR spectroscopies. These processes may be used for modelling the action of enzymes that use spin equilibrium to promote enzyme activity and reactivity towards small molecules.  相似文献   

15.
The structural identity of the axial ligands is one of the major determinants of haem protein function and properties. In this work, the mobile distal histidine residue of soybean leghaemoglobin a has been replaced with a non-coordinating alanine residue (H61A variant) and the H61A variant has been characterised using a range of spectroscopic methods. These experiments provide a useful experimental framework for the examination of haem axial ligation and structure-function relationships.  相似文献   

16.
T. C. Morton  R. W. Henderson 《BBA》1972,267(3):485-492
1. Haem c was synthesized and purified. It was shown unequivocally that the method gives a product with the cysteine residues on the -carbon atoms at the 2 and 4 positions of the haem.

2. Redox potentials of haem c in the presence of 2.5 M pyridine were determined in the pH range 1.5–13; it was found necessary to add cetyl trimethyl ammonium bromide (CTAB) to prevent precipitation in the acid range below about pH 4. The Em vs pH curve shows three slopes (−dE/dpH) of value, 0.18, 0.01 and 0.06 with points of inflexion at pH 3.8 and 10.6. The potentials are intermediate between those of protohaem and mesohaem obtained under similar conditions.

3. With constant haem c concentration (a) 10−4 M and (b) 10−5 M and varying pyridine concentration (0.12–5 M) it was found at pH 9.0 that Em values increased as the pyridine concentration was increased and there was a tendency to reach a plateau value. The explanation appears to be that pyridine binds more firmly to ferroporphyrin c than to ferriporhyrin c.

4. When the pyridine concentration was kept constant (2.5 M) and the haem c concentration was varied in the range 7 · 10−4–7 · 10−6 M, it was found that a decrease in haem c concentration brought about an increase in redox potential. The results are explained as being due to dimerization of the oxidized form.

5. The results are discussed in comparison with a number of related haem systems.  相似文献   


17.
A bacterioferritin was recently isolated from the anaerobic sulphate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 [Romão et al. (2000) Biochemistry 39, 6841–6849]. Although its properties are in general similar to those of the other bacterioferritins, it contains a haem quite distinct from the haem B, found in bacterioferritins from aerobic organisms. Using visible and NMR spectroscopies, as well as mass spectrometry analysis, the haem is now unambiguously identified as iron-coproporphyrin III, the first example of such a prosthetic group in a biological system. This unexpected finding is discussed in the framework of haem biosynthetic pathways in anaerobes and particularly in sulphate-reducing bacteria.  相似文献   

18.
The cytochrome b subunit (HydC) of Wolinella succinogenes hydrogenase binds two haem B groups. This is concluded from the haem B content of the isolated hydrogenase and is confirmed by the response of its cytochrome b to redox titration. In addition, three of the four haem B ligands were identified by characterizing mutants with the corresponding histidine residues replaced by alanine or methionine. Substitution in HydC of His-25, His-67 or His-186, which are, in addition to His-200, predicted to be haem B ligands, caused the loss of quinone reactivity of the hydrogenase, while the activity of benzylviologen reduction was retained. The corresponding mutants did not grow with H2 as electron donor and either fumarate or polysulphide as terminal electron acceptor. The mutants grown with formate and fumarate did not catalyse electron transport from H2 to fumarate or to polysulphide, or quinone reduction by H2, in contrast to the wild-type strain. Cytochrome b was not reduced by H2 in the Triton X-100 extract of the mutant membranes, which contained wild-type amounts of the mutated HydC protein. Substitution in HydC of His-122, His-158 or His-187, which are predicted not to be haem B ligands, yielded mutants with wild-type properties. Substitution in HydA of His-188 or of His-305 resulted in mutants with the same properties as those lacking one of the haem B ligands of HydC. His-305 is located in the membrane-integrated C-terminal helix of HydA. His-188 of HydA is predicted to be a ligand of the distal iron–sulphur centre that may serve as the direct electron donor to the haem B groups of HydC. The results suggest that each of the three predicted haem B ligands of HydC tested (out of four) is required for electron transport from H2 to either fumarate or polysulphide, and for quinone reactivity. This also holds true for the two conserved histidine residues of HydA.  相似文献   

19.
The spectral characteristics of the ‘655 nm’ band of cytochrome oxidase were found to be affected by ligands of the binuclear centre, including formate and chloride, and by the resting/pulsed transition. The band titrated with near n=1 characteristics at a midpoint of about 400 mV, in contrast to haem a3, which exhibits strong redox interaction and a titration range at significantly lower potential. Thus, although the total reduced-oxidised difference spectrum of haem a3, shows a trough at about 655 nm, this characteristic is absent in the low potential region. The 655 nm feature may arise from a charge transfer band of ferric high-spin haem a3, which is modulated by the redox state of CuB, as suggested by Beinert et al. [(1976) Biochim. Biophys. Acta 423, 339–355].  相似文献   

20.
Flavocytochrome c3 from Shewanella frigidimarina (fcc3) is a tetrahaem periplasmic protein of 64 kDa with fumarate reductase activity. This work reports the first example of NMR techniques applied to the assignment of the thermodynamic order of oxidation of the four individual haems for such large protein, expanding its applicability to a wide range of proteins. NMR data from partially and fully oxidised samples of fcc3 and a mutated protein with an axial ligand of haem IV replaced by alanine were compared with calculated chemical shifts, allowing the structural assignment of the signals and the unequivocal determination of the order of oxidation of the haems. As oxidation progresses the fcc3 haem domain is polarised, with haems I and II much more oxidised than haems III and IV, haem IV being the most reduced. Thus, during catalysis as an electron is taken by the flavin adenosine dinucleotide from haem IV, haem III is eager to re-reduce haem IV, allowing the transfer of two electrons to the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号