首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Rabbit skeletal muscle sarcoplasmic reticulum was fractionated into a "Ca2+-release" and "control" fraction by differential and sucrose gradient centrifugation. External Ca2+ (2-20 microM) caused the release of 40 nmol of 45Ca2+/mg of protein/s from Ca2+-release vesicles passively loaded at pH 6.8 with an internal half-saturation Ca2+ concentration of 10-20 mM. Ca2+-induced Ca2+ release had an approximate pK value of 6.6 and was half-maximally inhibited at an external Ca2+ concentration of 2 X 10(-4) M and Mg2+ concentration of 7 X 10(-5) M. 45Ca2+ efflux from control vesicles was slightly inhibited at external Ca2+ concentrations that stimulated the rapid release of Ca2+ from Ca2+-release vesicles. Adenine, adenosine, and derived nucleotides caused stimulation of Ca2+-induced Ca2+ release in media containing a "physiological" free Mg2+ concentration of 0.6 mM. At a concentration of 1 mM, the order of effectiveness was AMP-PCP greater than cAMP approximately AMP approximately ADP greater than adenine greater than adenosine. Other nucleoside triphosphates and caffeine were minimally effective in increasing 45Ca2+ efflux from passively loaded Ca2+-release vesicles. La3+, ruthenium red, and procaine inhibited Ca2+-induced Ca2+ release. Ca2+ flux studies with actively loaded vesicles also indicated that a subpopulation of sarcoplasmic reticulum vesicles contains a Ca2+ permeation system that is activated by adenine nucleotides.  相似文献   

2.
Halothane induces the release of Ca2+ from a subpopulation of sarcoplasmic reticulum vesicles that are derived from the terminal cisternae of rat skeletal muscle. Halothane-induced Ca2+ release appears to be an enhancement of Ca2+-induced Ca2+ release. The low-density sarcoplasmic reticulum vesicles which are believed to be derived from nonjunctional sarcoplasmic reticulum lack the capability of both Ca2+-induced and halothane-induced Ca2+ release. Ca2+ release from terminal cisternae vesicles induced by halothane is inhibited by Ruthenium red and Mg2+, and require ATP (or an ATP analogue), KCl (or similar salt) and extravesicular Ca2+. Ca2+-induced Ca2+ release has similar characteristics.  相似文献   

3.
Uptake and release of Ca2+ in heavy and light fractions of fragmented sarcoplasmic reticulum (FSR) isolated from frog and rabbit skeletal muscle was studied under conditions similar to those employed in skinned muscle fiber experiments, where ATP and Mg2+ concentrations were considered to be physiological and free Ca2+ concentration was kept constant during the Ca2+ uptake and release. Ca2+ level in FSR monotonously approached a steady state level which depended only on the final experimental conditions. Heavy fractions, but not light fractions, exhibited characteristics similar to those of Ca2+-induced Ca2+ release reported in skinned fiber studies: i) the rate and steady state level of Ca2+ uptake increased with increase in free Ca2+ concentration in the reaction medium up to 10(-6) M. With further increase in free Ca2+ concentration, the steady state level of Ca2+ taken up decreased while the Ca2+ uptake rate increased. ii) The steady state Ca2+ level was decreased by caffeine but increased by procaine or ruthenium red. Parallel measurement of Ca2+-ATPase activity clearly showed that these drugs modify the Ca2+ efflux but hardly affect the Ca2+-pump activity. It was concluded that the Ca2+-induced Ca2+ release mechanism was in operation at as low as 10(-6) M free Ca2+ concentration. Treatment of FSR with 0.6 M KCl did not have any significant effect.  相似文献   

4.
Alkalinization-induced Ca2+ release from isolated frog or rabbit sarcoplasmic reticulum vesicles appears to consist of two distinct components: 1) a direct activation of ruthenium red-sensitive Ca2+ release channels in terminal cisternae and 2) an increased ruthenium red-insensitive Ca2+ efflux through some other efflux pathway distributed throughout the sarcoplasmic reticulum. The first of these releases exhibits an alkalinization-induced inactivation process and does not depend on the ruthenium red-insensitive form of Ca2+ release as a triggering agent for secondary Ca(2+)-induced Ca2+ release. Both releases are inhibited when the extravesicular (i.e. cytoplasmic) free [Ca2+] is reduced. This may reflect an increased sensitivity of the Ca2+ release channels to Ca2+ at alkaline pH. The pH sensitivity of the ruthenium red-sensitive Ca2+ release channels could be of significance during excitation-contraction coupling. The ruthenium red-insensitive form of Ca2+ release is less likely to be physiologically relevant, but it probably has contributed greatly to reports of alkalinization-induced decreases in net sarcoplasmic reticulum Ca2+ uptake, particularly under conditions where oxalate supported Ca2+ uptake is much less affected, as here.  相似文献   

5.
The effects of modifiers of Ca2+ uptake and release in sarcoplasmic reticulum were studied in human platelet membranes. AgNO3,p-chloromercuribenzoate (pClHgBzO), N-ethylmaleimide (MalNEt), quercetin, vanadate, A23187, and caffeine all had the same effects on Ca2+ uptake in platelet membranes as had been observed for sarcoplasmic reticulum. These results strengthen our earlier conclusion that the Ca2+-pump proteins from internal human platelet membranes and muscle sarcoplasmic reticulum are very similar in functional properties. The sulfhydryl reagents Ag+ and pClHgBzO elicited rapid release of Ca2+ from platelet membranes in the presence of ATP, whereas MalNEt induced slow release. Quercetin also caused slow release of Ca2+ from platelet membranes in the presence of ATP. The effects of all three sulfhydryl reagents could be reversed by dithiothreitol, and Ag+-induced release was also reversed by ruthenium red. These effects are similar to those observed in sarcoplasmic reticulum, but in contrast caffeine did not induce Ca2+ release. In the absence of ATP, passively loaded platelet membranes did not release Ca2+ when exposed to sulfhydryl reagents. However, AgCl and pClHgBzO inhibited inositol trisphosphate (InsP3)-induced Ca2+ release from platelet membranes and this effect was reversed by dithiothreitol. Ruthenium red also inhibited InsP3-induced release, but ATP was found not to be required for InsP3-mediated release. LiCl enhanced Ca2+ release from platelet membranes. These results demonstrate that the InsP3-gated Ca2+ release channel is a separate entity from the Ca2+-pump and that essential protein sulfhydryls are involved in the release process.  相似文献   

6.
The effect of the plant alkaloid ryanodine on the skeletal muscle sarcoplasmic reticulum Ca2+ release channel was studied by determining the Ca2+ permeability of "heavy" vesicles passively loaded with 45Ca2+ in the presence or absence of ryanodine. Depending on the experimental conditions, ryanodine either stimulated or inhibited Ca2+ efflux. Vesicles were rendered permeable to 45Ca2+ at a ryanodine concentration of 0.01 microM when diluted into a medium containing the two Ca2+ release channel inhibitors Mg2+ and ruthenium red. At ryanodine concentrations greater than 10 microM, 45Ca2+ efflux was inhibited in channel-activating (5 microM Ca2+) or -inhibiting (10 mM Mg2+ plus 10 microM ruthenium red) media. An optimal stimulatory effect was observed when vesicles were incubated with ryanodine at 37 degrees C and in media that caused partial opening of the channel. Similar results to those described above were obtained using cardiac sarcoplasmic reticulum vesicles that were capable of rapid 45Ca2+ efflux. Use of the slowly permeating molecule L-[3H]glucose allowed measurement of channel-mediated efflux rates from vesicles in the presence and absence of ryanodine. At low activating concentrations, ryanodine did not appreciably change the regulation of L-glucose efflux rates by external Ca2+, Mg2+, and adenine nucleotide. These results suggested two possible modes of action of ryanodine: 1) a change in the gating mechanism of the channel which is not readily detected using the slowly permeating molecule L-glucose or 2) a change in channel structure which prevents its complete closing.  相似文献   

7.
A subpopulation of canine cardiac sarcoplasmic reticulum vesicles has been found to contain a "Ca2+ release channel" which mediates the release of intravesicular Ca2+ stores with rates sufficiently rapid to contribute to excitation-contraction coupling in cardiac muscle. 45Ca2+ release behavior of passively and actively loaded vesicles was determined by Millipore filtration and with the use of a rapid quench apparatus using the two Ca2+ channel inhibitors, Mg2+ and ruthenium red. At pH 7.0 and 5-20 microM external Ca2+, cardiac vesicles released half of their 45Ca2+ stores within 20 ms. Ca2+-induced Ca2+ release was inhibited by raising and lowering external Ca2+ concentration, by the addition of Mg2+, and by decreasing the pH. Calmodulin reduced the Ca2+-induced Ca2+ release rate 3-6-fold in a reaction that did not appear to involve a calmodulin-dependent protein kinase. Under various experimental conditions, ATP or the nonhydrolyzable ATP analog, adenosine 5'-(beta, gamma-methylene)triphosphate (AMP-PCP), and caffeine stimulated 45Ca2+ release 2-500-fold. Maximal release rates (t1/2 = 10 ms) were observed in media containing 10 microM Ca2+ and 5 mM AMP-PCP or 10 mM caffeine. An increased external Ca2+ concentration (greater than or equal to 1 mM) was required to optimize the 45Ca2+ efflux rate in the presence of 8 mM Mg2+ and 5 mM AMP-PCP. These results suggest that cardiac sarcoplasmic reticulum contains a ligand-gated Ca2+ channel which is activated by Ca2+, adenine nucleotide, and caffeine, and inhibited by Mg2+, H+, and calmodulin.  相似文献   

8.
ATP-dependent Ca2+ uptake by subfractions of skeletal muscle sarcoplasmic reticulum (SR) was studied with the Ca2+ indicator dye, antipyrylazo III. Ca2+ uptake by heavy SR showed two phases, a slow uptake phase and a fast uptake phase. By contrast, Ca2+ uptake by light SR exhibited a monophasic time course. In both fractions a steady state of Ca2+ uptake was observed when the concentration of free Ca2+ outside the vesicles was reduced to less than 0.1 microM. In the steady state, the addition of 5 microM Ca2+ to the external medium triggered rapid Ca2+ release from heavy SR but not from light SR, indicating that the heavy fraction contains a Ca2+-induced Ca2+ release channel. During Ca2+ uptake, heavy SR showed a constant Ca2+-dependent ATPase activity (1 mumol/mg protein X min) which was about 150 times higher than the rate of Ca2+ uptake in the slow uptake phase. Ruthenium red, an inhibitor of Ca2+-induced Ca2+ release, enhanced the rate of Ca2+ uptake during the slow phase without affecting Ca2+-dependent ATPase activity. Adenine nucleotides, activators of Ca2+ release, reduced the Ca2+ uptake rate. These results suggest that the rate of Ca2+ accumulation by heavy SR is not proportional to ATPase activity during the slow uptake phase due to the activation of the channel for Ca2+-induced Ca2+ release. In addition, they suggest that the release channel is inactivated during the fast Ca2+ uptake phase.  相似文献   

9.
Heavy metal ions have been shown to induce Ca2+ release from skeletal sarcoplasmic reticulum (SR) by binding to free sulfhydryl groups on a Ca2+ channel protein and are now examined in cardiac SR. Ag+ and Hg2+ (at 10-25 microM) induced Ca2+ release from isolated canine cardiac SR vesicles whereas Ni2+, Cd2+, and Cu2+ had no effect at up to 200 microM. Ag(+)-induced Ca2+ release was measured in the presence of modulators of SR Ca2+ release was compared to Ca2(+)-induced Ca2+ release and was found to have the following characteristics. (i) Ag(+)-induced Ca2+ release was dependent on free [Mg2+], such that rates of efflux from actively loaded SR vesicles increased by 40% in 0.2 to 1.0 mM Mg2+ and decreased by 50% from 1.0 to 10.0 mM Mg2+. (ii) Ruthenium red (2-20 microM) and tetracaine (0.2-1.0 mM), known inhibitors of SR Ca2+ release, inhibited Ag(+)-induced Ca2+ release. (iii) Adenine nucleotides such as cAMP (0.25-2.0 mM) enhanced Ca2(+)-induced Ca2+ release, and stimulated Ag(+)-induced Ca2+ release. (iv) Low Ag+ to SR protein ratios (5-50 nmol Ag+/mg protein) stimulated Ca2(+)-dependent ATPase activity in Triton X-100-uncoupled SR vesicles. (v) At higher ratios of Ag+ to SR proteins (50-250 nmol Ag+/mg protein), the rate of Ca2+ efflux declined and Ca2(+)-dependent ATPase activity decreased gradually, up to a maximum of 50% inhibition. (vi) Ag+ stimulated Ca2+ efflux from passively loaded SR vesicles (i.e., in the absence of ATP and functional Ca2+ pumps), indicating a site of action distinct from the SR Ca2+ pump. Thus, at low Ag+ to SR protein ratios, Ag+ is very selective for the Ca2+ release channel. At higher ratios, this selectivity declines as Ag+ also inhibits the activity of Ca2+,Mg2(+)-ATPase pumps. Ag+ most likely binds to one or more sulfhydryl sites "on" or "adjacent" to the physiological Ca2+ release channel in cardiac SR to induce Ca2+ release.  相似文献   

10.
Purified canine cardiac sarcoplasmic reticulum vesicles were passively loaded with 45CaCl2 and assayed for Ca2+ releasing activity according to a rapid quench protocol. Ca2+ release from a subpopulation of vesicles was found to be activated by micromolar Ca2+ and millimolar adenine nucleotides, and inhibited by millimolar Mg2+ and micromolar ruthenium red. 45Ca2+ release in the presence of 10 microM free Ca2+ gave a half-time for efflux of 20 ms. Addition of 5 mM ATP to 10 microM free Ca2+ increased efflux twofold (t1/2 = 10 ms). A high-conductance calcium-conducting channel was incorporated into planar lipid bilayers from the purified cardiac sarcoplasmic reticulum fractions. The channel displayed a unitary conductance of 75 +/- 3 pS in 53 mM trans Ca2+ and was selective for Ca2+ vs. Tris+ by a ratio of 8.74. The channel was dependent on cis Ca2+ for activity and was also stimulated by millimolar ATP. Micromolar ruthenium red and millimolar Mg2+ were inhibitory, and reduced open probability in single-channel recordings. These studies suggest that cardiac sarcoplasmic reticulum contains a high-conductance Ca2+ channel that releases Ca2+ with rates significant to excitation-contraction coupling.  相似文献   

11.
The same level of passively loaded Ca2+ was observed both in the heavy (enriched in terminal cisternae) and light (enriched in longitudinal reticulum) sarcoplasmic reticulum (SR) fractions. The level of passively loaded Ca2+ of the both SR fractions decreased in the presence of 150 mM K+. However the rate and extent of Ca2+ release was greater from heavy SR fraction. The rate of Ca2+ release under conditions of antiport of K+, Na+, choline+ and gluconate-, Cl-, SCH- increased proportion with their permeability through the SR membrane. The initial rate of Ca2+ release also became higher under equal concentration of monovalent cation chloride both inside and outside the SR vesicles. Apparently, in this case Ca2+ release occurs through Ca-channels which are open at a membrane potential.  相似文献   

12.
A radioisotope flux-rapid-quench-Millipore filtration method is described for determining the effects of Ca2+, adenine nucleotides, and Mg2+ on the Ca2+ release behaviour of "heavy" sarcoplasmic reticulum (SR) vesicles. Rapid 45Ca2+ efflux from passively loaded vesicles was blocked by the addition of Mg2+ and ruthenium red. At pH 7 and 10(-9) M Ca2+, vesicles released 45Ca2+ with a low rate (k = 0.1 s-1). An increase in external Ca2+ concentration to 4 microM or the addition of 5 mM ATP or the ATP analogue adenosine 5'-(beta,gamma-methylenetriphosphate) (AMP-PCP) resulted in intermediate 45Ca2+ release rates. The maximal release rate was observed in media containing 4 microM Ca2+ and 5 mM AMP-PCP and had a first-order rate constant of 30-100 s-1. Mg2+ partially inhibited Ca2+- and nucleotide-induced 45Ca2+ efflux. In the absence of AMP-PCP, 45Ca2+ release was fully inhibited at 5 mM Mg2+ or 5 mM Ca2+. The composition of the release media was systematically varied, and the flux data were expressed in the form of Hill equations. The apparent n values of activation of Ca2+ release by ATP and AMP-PCP were 1.6-1.9. The Hill coefficient of Ca2+ activation (n = 0.8-2.1) was dependent on nucleotide and Mg2+ concentrations, whereas the one of Mg2+ inhibition (n = 1.1-1.6) varied with external Ca2+ concentration. These results suggest that heavy SR vesicles contain a "Ca2+ release channel" which is capable of conducting Ca2+ at rates comparable with those found in intact muscle. Ca2+, AMP-PCP (ATP), and Mg2+ appear to act at noninteracting or interacting sites of the channel.  相似文献   

13.
The caffeine-sensitive Ca2+ release pathway in skeletal muscle was identified and characterized by studying the release of 45Ca2+ from heavy sarcoplasmic reticulum (SR) vesicles and by incorporating the vesicles or the purified Ca2+ release channel protein complex into planar lipid bilayers. First-order rate constants for 45Ca2+ efflux of 1 s-1 were obtained in the presence of 1-10 microM free Ca2+ or 2 X 10(-9) M free Ca2+ plus 20 mM caffeine. Caffeine- and Ca2+-induced 45Ca2+ release were potentiated by ATP and Mg.ATP, and were both inhibited by Mg2+. Dimethylxanthines were similarly (3,9-dimethylxanthine) or more (1,7-, 1,3-, and 3,7-dimethylxanthine) effective than caffeine in increasing the 45Ca2+ efflux rate. 1,9-Dimethylxanthine and 1,3-dimethyluracil (which lacks the imidazole ring) did not appreciably stimulate 45Ca2+ efflux. Recordings of calcium ion currents through single channels showed that the Ca2+- and ATP-gated SR Ca2+ release channel is activated by addition of caffeine to the cis (cytoplasmic) and not the trans (lumenal) side of the channel in the bilayer. The single channel measurements further revealed that caffeine activated Ca2+ release by increasing the number and duration of open channel events without a change of unit conductance (107 pS in 50 mM Ca2+ trans). These results suggest that caffeine exerts its Ca2+ releasing effects in muscle by activating the high-conductance, ligand-gated Ca2+ release channel of sarcoplasmic reticulum.  相似文献   

14.
The effect of phenothiazines (trifluoperazine, chlorpromazine, methochlorpromazine, and imipramine) on Ca2+ fluxes in light and heavy sarcoplasmic reticulum (SR) isolated from rabbit fast-twitch skeletal muscle was investigated. These drugs inhibited Ca2+ loading and (Ca2+,Mg2+)-ATPase activity, but had no effect on unidirectional Ca2+ efflux from vesicles loaded either actively or passively with Ca2+. Chlorpromazine, which is membrane permeable, and its quaternary analog, methochlorpromazine, which is membrane impermeable, gave identical results. It is concluded that (a) the enhancement of net Ca2+ release by phenothiazines is due to inhibition of Ca2+ influx mediated by the Ca2+ pump rather than to the opening of a Ca2+ channel; and (b) phenothiazines act at the outer (myoplasmic) face of the SR membrane.  相似文献   

15.
Using a Ca2+-selective electrode and Quin 2 and chlortetracycline fluorescence, a Ca2+ release from terminal cysterns of skeletal muscle sarcoplasmic reticulum under effects of heparin, caffeine and Ca2+ has been studied. It was shown that Ca2+ release induced by heparin is insensitive to the blockers of Mg2+-dependent system of Ca2+-induced Ca2+ release, i.e., Mg2+, tetracaine and dimethylsulfoxide. Preliminary release of Ca2+ in the presence of caffeine, which activates Mg2+-dependent Ca2+ release, does not prevent the heparin-induced Ca2+ release. At the same time, after Ca2+ release caused by Ca2+ in a Mg2+-independent system, heparin cannot cause additional efflux of Ca2+. It has been shown that the heparin-induced release of Ca2+ diminishes with a decrease in a decrease in Ca2+ concentration. This effect is less pronounced in the presence of Na+ than with K+. The data obtained suggest that sarcoplasmic reticulum terminal cysterns contain two systems of Ca2+-induced release of Ca2+, i.e., a Mg2+-dependent, caffeine-sensitive and a Mg2+-independent heparin-sensitive ones. The mechanism of activation of both systems by caffeine and heparin consists, in all probability, in their increased affinity for Ca2+.  相似文献   

16.
Reactive disulfide compounds (RDSs) with a pyridyl ring adjacent to a disulfide bond, 2,2'dithiodipyridine (2,2' DTDP) and 4,4' dithiodipyridine (4,4' DTDP), induce Ca2+ release from isolated canine cardiac sarcoplasmic reticulum (SR) vesicles. RDSs are absolutely specific to free sulfhydryl (SH) groups and oxidize SH sites of low pKa via a thiol-disulfide exchange reaction, with the stoichiometric production of thiopyridone in the medium. As in skeletal SR, this reaction caused large increases in the Ca2+ permeability of cardiac SR and the number of SH sites oxidized by RDSs was kinetically and quantitatively measured through the absorption of thiopyridone. RDS-induced Ca2+ release from cardiac SR was characterized and compared to the action of RDSs on skeletal SR and to Ca2(+)-induced Ca2+ release. (i) RDS-induced Ca2+ release from cardiac SR was dependent on ionized Mg2+, with maximum rates of release occurring at 0.5 and 1 mM Mg2+free for 2,2' DTDP and 4,4' DTDP, respectively. (ii) In the presence of adenine nucleotides (0.1-1 mM), the oxidation of SH sites in cardiac SR by exogenously added RDS was inhibited, which, in turn, inhibited Ca2+ release induced by RDSs. (iii) Conversely, when the oxidation reaction between RDSs and cardiac SR was completed and Ca2+ release pathways were opened, subsequent additions of adenine nucleotides stimulated Ca2+ efflux induced by RDSs. (iv) Sulfhydryl reducing agents (e.g., dithiothreitol, DTT, 1-5 mM) inhibited RDS-induced Ca2+ efflux in a concentration-dependent manner. (v) RDSs elicited Ca2+ efflux from passively loaded cardiac SR vesicles (i.e., with nonfunctional Ca2+ pumps in the absence of Mg-ATP) and stimulated Ca2(+)-dependent ATPase activity, which indicated that RDS uncoupled Ca2+ uptake and did not act at the Ca2+, Mg2(+)-ATPase. These results indicate that RDSs selectively oxidize critical sulfhydryl site(s) on or adjacent to a Ca2+ release channel protein channel and thereby trigger Ca2+ release. Conversely, reduction of these sites reverses the effects of RDSs by closing Ca2+ release channels, which results in active Ca2+ reuptake by Ca2+, Mg2(+)-ATPase. These compounds can thus provide a method to covalently label and identify the protein involved in Ca2+ release from cardiac SR.  相似文献   

17.
The Ca2(+)-ATPase found in the light fraction of sarcoplasmic reticulum vesicles can be phosphorylated by Pi, forming an acylphosphate residue at the catalytic site of the enzyme. This reaction was inhibited by the phenothiazines trifluoperazine, chlorpromazine, imipramine, and fluphenazine and by the beta-adrenergic blocking agents propranolol and alprenolol. The inhibition was reversed by raising either the Pi or the Mg2+ concentration in the medium and was not affected by the presence of K+. Phosphorylation of the Ca2(+)-ATPase by Pi was also inhibited by ruthenium red and spermidine. These compounds compete with Mg2+, but, unlike the phenothiazines, they did not compete with Pi at the catalytic site, and the inhibition was abolished when K+ was included in the assay medium. The efflux of Ca2+ from loaded vesicles was greatly increased by the phenothiazines and by propranolol and alprenolol. In the presence of 200 microM trifluoperazine, the rate of Ca2+ efflux was higher than 3 mumol of Ca2+/mg of protein/10 s. The activation of efflux by these drugs was antagonized by Pi, Mg2+, K+, Ca2+, ADP, dimethyl sulfoxide, ruthenium red, and spermidine. The increase of Ca2+ efflux caused by trifluoperazine was not correlated with binding of the drug to the membrane lipids. It is concluded that the Ca2+ pump can be uncoupled by different drugs, thereby greatly increasing the efflux of Ca2+ through the ATPase. Displacement of these drugs by the natural ligands of the ATPase blocks the efflux through the uncoupled pathway and limits it to a much smaller rate. Thus, the Ca2(+)-ATPase can operate either as a pump (coupled) or as a Ca2+ channel (uncoupled).  相似文献   

18.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

19.
Rapid Ca2+ release rate from sarcoplasmic reticulum vesicles was determined by the stopped flow method in terms of chlortetracycline fluorescence. Intensity of chlortetracycline fluorescence was proportional to the intravesicular free Ca2+ concentration. Ca2+ efflux was activated by extravesicular Ca2+ with an apparent dissociation constant of 25 microM and was inhibited with an inhibition constant of 120 microM in the absence of Mg2+. Caffeine enhanced the Ca2+ release rate by increasing only the affinity of Ca2+ for the activation site. Mg2+ reduced the Ca2+ release rate by competitive binding to the activation site. ATP increased the Ca2+ release rate very much without changing the affinities of Ca2+ for the activation and inhibition sites, i.e., ATP seems to increase the pore radius or number of the Ca2+ channels without affecting the gating mechanism of the channel. These results are consistent with those reported in skinned muscle sarcoplasmic reticulum. The maximum rate of Ca2+ release in the presence of ATP reached 80 s-1. This value is considered to be sufficient to cause muscular contraction.  相似文献   

20.
The release of Ca2+ from the intracellular store site, as induced by inositol 1,4,5-trisphosphate, was studied in relation to free Ca2+ concentrations or amounts of stored Ca2+ in smooth muscle cells. The maximal Ca2+ release induced by inositol 1,4,5-trisphosphate was observed when the amount of Ca2+ in the store site was about 50% of the maximal capacity of the Ca2+ storage, and when the extravesicular free Ca2+ concentration was less than 1.5 X 10(-6) M. The Ca2+ release induced by inositol 1,4,5-trisphosphate was accelerated by ATP and 5'-adenylylimidodiphosphate (AMPPNP), but not by ADP and AMP. This inositol 1,4,5-trisphosphate-induced Ca2+ release appeared to be specific for intracellular Ca2+ store sites (mainly sarcoplasmic reticulum), and this Ca2+ release was not apparent in the sarcolemmal fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号