首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Collapsin response mediator protein 1 (CRMP1) and CRMP2 have been known as mediators of extracellular guidance cues such as semaphorin 3A and contribute to cytoskeletal reorganization in the axonal pathfinding process. To date, how CRMP1 and CRMP2 focally regulate axonal pathfinding in the growth cone has not been elucidated. To delineate the local functions of these CRMPs, we carried out microscale‐chromophore‐assisted light inactivation (micro‐CALI), which enables investigation of localized molecular functions with highly spatial and temporal resolutions. Inactivation of either CRMP1 or CRMP2 in the neurite shaft led to arrested neurite outgrowth. Micro‐CALI of CRMP2 in the central domain of the growth cones consistently arrested neurite outgrowth, whereas micro‐CALI of CRMP1 in the same region caused significant lamellipodial retraction, followed by retardation of neurite outgrowth. Focal inactivation of CRMP1 in its half region of the growth cone resulted in the growth cone turning away from the irradiated site. Conversely, focal inactivation of CRMP2 resulted in the growth cone turning toward the irradiated site. These findings suggest different functions for CRMP1 and CRMP2 in growth cone behavior and neurite outgrowth. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

2.
Dietary sphingolipids such as glucosylceramide (GlcCer) are potential nutritional factors associated with prevention of metabolic syndrome. Our current understanding is that dietary GlcCer is degraded to ceramide and further metabolized to sphingoid bases in the intestine. However, ceramide is only found in trace amounts in food plants and thus is frequently taken as GlcCer in a health supplement. In the present study, we successfully prepared konjac ceramide (kCer) using endoglycoceramidase I (EGCase I). Konjac, a plant tuber, is an enriched source of GlcCer (kGlcCer), and has been commercialized as a dietary supplement to improve dry skin and itching that are caused by a deficiency of epidermal ceramide. Nerve growth factor (NGF) produced by skin cells is one of the itch factors in the stratum corneum of the skin. Semaphorin 3A (Sema 3A) has been known to inhibit NGF-induced neurite outgrowth of epidermal nerve fibers. It is well known that the itch sensation is regulated by the balance between NGF and Sema 3A. In the present study, while kGlcCer did not show an in vitro inhibitory effect on NGF-induced neurite outgrowth of PC12 cells, kCer was demonstrated to inhibit a remarkable neurite outgrowth. In addition, the effect of kCer was similar to that of Sema 3A in cell morphological changes and neurite retractions, but different from C2-Ceramide. kCer showed a Sema 3A-like action, causing CRMP2 phosphorylation, which results in a collapse of neurite growth cones. Thus, it is expected that kCer is an advanced konjac ceramide material that may have neurite outgrowth-specific action to relieve uncontrolled and serious itching, in particular, from atopic eczema.  相似文献   

3.
Since the original discovery and structural elucidation of the mammalian phospholipase D (PLD), its potential to play a role in the lipid signalling pathway has attracted considerable interest. Now, it is generally accepted that different PLD isozymes are likely to serve diverse functions in membrane trafficking, endocytosis, exocytosis, cell growth, differentiation and actin cytoskeletal organization. In addition, PLDs are known to play a key role in neurite outgrowth, especially axon outgrowth, in neuronal cells.  相似文献   

4.
5.
Role of phospholipase D1 in neurite outgrowth of neural stem cells   总被引:2,自引:0,他引:2  
Employing neural stem cells from the brain cortex of E12 rat embryos, we investigated the possible role of phospholipase D (PLD) in the synaptogenesis and neurite formation of neural cells during differentiation. Expression level of PLD1 increased during neuronal differentiation of the neural stem cells, resulting in increased PLD activity. Expression level of synapsin I, a marker of synaptogenesis, also increased as the differentiation of neural stem cells progressed. To figure out the effect of PLD on synapsin I expression, we treated the neural stem cells with phorbol myristate acetate (PMA) to stimulate PLD activity. Increased PLD activity induced by PMA treatment resulted in elevated synapsin I expression and neurite outgrowth during neuronal differentiation. To further confirm the role of PLD in neurite outgrowth, we transfected the dominant-negative form of rat PLD1 cDNA (DN-rPLD1) into neural stem cells to downregulate PLD activity. Overexpression of DN-rPLD1 showed the complete inhibition of neurite outgrowth of neural stem cells under differentiation condition. While transfection of DN-rPLD1 did not affect the synapsin I expression, overexpression of rPLD1 resulted in increased synapsin I expression of the neural cells. These results suggest that PLD1 plays a critical role in neurite outgrowth during differentiation of the neural stem cells. In conclusion, this is the first evidence to show that PLD1 acts as an important regulator of neurite outgrowth in neural stem cell by promoting neuronal differentiation via increase of synapsin I expression.  相似文献   

6.
Intracellular calcium ions (Ca2+) have an essential role in the regulation of neurite outgrowth, but how outgrowth is controlled remains largely unknown. In this study, we examined how the mechanisms of neurite outgrowth change during development in chick and mouse dorsal root ganglion neurons. 2APB, a potent inhibitor of inositol 1,4,5-trisphosphate (IP3) receptors (IP3R), inhibited neurite outgrowth at early developmental stages, but not at later stages. In contrast, pharmacological inhibition with Ni2+, Cd2+, or dantrolene revealed that ryanodine receptor (RyR)-mediated Ca2+-induced Ca2+ release (CICR) was involved in neurite outgrowth at later stage, but not at early stages. The distribution of IP3R and RyR in growth cones also changed during development. Furthermore, pharmacological inhibition of the Ca2+-calmodulin-dependent phosphatase calcineurin with FK506 reduced neurite outgrowth only at early stages. These data suggest that the calcium signaling that regulates neurite outgrowth may change during development from an IP3R-mediated pathway to a RyR-mediated pathway.  相似文献   

7.
Galectin-1 (GAL-1), a member of a family of β-galactoside binding animal lectins, is predominantly expressed in isolectin B4 (IB4)-binding small non-peptidergic (glial cell line-derived neurotrophic factor (GDNF)-responsive) sensory neurons in the sections of adult rat dorsal root ganglia (DRG), but its functional role and the regulatory mechanisms of its expression in the peripheral nervous system remain unclear. In the present study, both recombinant nerve growth factor (NGF) and GDNF (50 ng/ml) promoted neurite outgrowth from cultured adult rat DRG neurons, whereas GDNF, but not NGF, significantly increased the number of IB4-binding neurons and the relative protein expression of GAL-1 in the neuron-enriched culture of DRG. The GAL-1 expression in immortalized adult rat Schwann cells IFRS1 and DRG neuron-IFRS1 cocultures was unaltered by treatment with GDNF, which suggests that GDNF/GAL-1 signaling axis is more related to neurite outgrowth, rather than neuron-Schwann cell interactions. The GDNF-induced neurite outgrowth and GAL-1 upregulation were attenuated by anti-GDNF family receptor (RET) antibody and phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, suggesting that the neurite-outgrowth promoting activity of GDNF may be attributable, at least partially, to the upregulation of GAL-1 through RET-PI3K pathway. On the contrary, no significant differences were observed between GAL-1 knockout and wild-type mice in DRG neurite outgrowth in the presence or absence of GDNF. Considerable immunohistochemical colocalization of GAL-3 with GAL-1 in DRG sections and GDNF-induced upregulation of GAL-3 in cultured DRG neurons imply the functional redundancy between these galectins.  相似文献   

8.

Background

The apolipoprotein E4 (apoE4) genotype is a major risk factor for developing late-onset Alzheimer’s disease (AD). Inheritance of apoE4 is also associated with impairments in olfactory function in early stages of AD. In this project we examined the effects of the three common isoforms of human apoE (apoE2, apoE3, and apoE4) on neuronal differentiation and neurite outgrowth in explant cultures of mouse olfactory epithelium (OE).

Results

The OE cultures derived from apoE-deficient/knockout (KO) mice have significantly fewer neurons with shorter neurite outgrowth than cultures from wild-type (WT) mice. Treatment of the apoE KO culture with either purified human apoE2 or with human apoE3 significantly increased neurite outgrowth. In contrast, treatment with apoE4 did not have an effect on neurite outgrowth. The differential effects of human apoE isoforms on neurite outgrowth were abolished by blocking the low-density lipoprotein receptor-related protein (LRP) with lactoferrin and receptor-associated protein (RAP).

Conclusion

ApoE2 and apoE3 stimulate neurite outgrowth in OE cultures by interacting with the lipoprotein receptor, LRP. ApoE4, the isoform associated with AD, failed to promote neurite outgrowth, suggesting a potential mechanism whereby apoE4 may lead to olfactory dysfunction in AD patients.  相似文献   

9.
We previously demonstrated that phospholipase D (PLD) expression and PLD activity are upregulated during neuronal differentiation. In the present study, employing neural stem cells from the brain cortex of E14 rat embryos, we investigated the role of Rho family GTPases in PLD activation and in neurite outgrowth of neural stem cells during differentiation. As neuronal differentiation progressed, the expression levels of Cdc42 and RhoA increased. Furthermore, Cdc42 and PLD1 were mainly localized in neurite, whereas RhoA was localized in cytosol. Co-immunoprecipitation revealed that Cdc42 was bound to PLD1 during differentiation, whereas RhoA was associated with PLD1 during both proliferation and differentiation. These results indicate that the association between Cdc42 and PLD1 is related to neuronal differentiation. To examine the effect of Cdc42 on PLD activation and neurite outgrowth, we transfected dominant negative Cdc42 (Cdc42N17) and constitutively active Cdc42 (Cdc42V12) into neural stem cells, respectively. Overexpression of Cdc42N17 decreased both PLD activity and neurite outgrowth, whereas co-transfection with Cdc42N17 and PLD1 restored them. On the other hand, Cdc42V12 increased both PLD activity and neurite outgrowth, suggesting that active state of Cdc42 is important in upregulation of PLD activity which is responsible for the increase of neurite outgrowth.  相似文献   

10.
Neurite outgrowth is the basis for wiring during the development of the nervous system. Dl-3-n-butylphthalide (NBP) has been recognized as a promising treatment to improve behavioral, neurological and cognitive outcomes in ischemic stroke. However, little is known about the effect and mechanism of NBP on the neurite outgrowth. In this study, we used different methods to investigate the potential effects of NBP on the neurite extension and plasticity of immature and mature primary cortical neurons and explored the underlying mechanisms. Our results demonstrated that in immature and mature cortical neurons, NBP promoted the neurite length and intersections, increased neuritic arborization, elevated numbers of neurite branch and terminal points and improved neurite complexity and plasticity of neuronal development processes. Besides, our data revealed that NBP promoted neurite extension and branching partly by activating Shh signaling pathway via increasing Gap43 expression both in immature and mature primary cortical neurons. The present study provided new insights into the contribution of NBP in neuronal plasticity and unveiled a novel pathway to induce Gap43 expression in primary cortical neurons.  相似文献   

11.
Lithium, a drug in the treatment of bipolar disorder, modulates many aspects of neuronal developmental processes such as neurogenesis, survival, and neuritogenesis. However, the underlying mechanism still remains to be understood. Here, we show that lithium upregulates the expression of sorting nexin 3 (SNX3), one of the Phox (PX) domain-containing proteins involved in endosomal sorting, and regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The inhibition of SNX3 function by its knockdown decreases lithium-induced outgrowth of neurites. Transfection of the full-length SNX3 construct into cells facilitates the outgrowth. We also find that the C-terminus, as well as the PX domain, of SNX3 has a functional binding sequence with phosphatidylinositol monophosphates. Transfection of the C-terminal deletion mutant or only the C-terminus does not have an effect on the outgrowth. These results suggest that SNX3, a protein upregulated by lithium, is an as yet unknown regulator of neurite formation and that it contains another functional phosphatidylinositol phosphate-binding region at the C-terminus.  相似文献   

12.
13.
The interaction between Nogo-66 and its receptor NgR represents a promising target for designing drugs to treat CNS axonal injury which often leads to permanent disability. Unfortunately, the isolated Nogo-66 is highly insoluble while its truncated form Nogo-40 is soluble but unstructured, thus retarding further characterization and application. Here, we rationally design another soluble form Nogo-54. CD and NMR characterization reveals that Nogo-54 is structured, and importantly, is able to mimic Nogo-66 in inhibiting neurite outgrowth. Strikingly, mutating its C-terminal four residues (Lys50, Glu51, Arg53, and Arg54) leads to a mutant Nogo-54m which has no dramatic structural change but whose inhibitory activity is completely abolished. This strongly suggests that the four charged residues contribute significantly to the inhibitory action of Nogo-66. Furthermore, our study also provides a soluble and structured mimic as well as a possible antagonist for Nogo-66 which may hold promising potential for various medical applications.  相似文献   

14.
Valproic acid (VPA), a mood stabilizer and anticonvulsant, has a variety of neurotrophic functions; however, less is known about how VPA regulates neurite outgrowth. Here, using N1E-115 neuroblastoma cells as the model, we show that VPA upregulates Gadd45a to trigger activation of the downstream JNK cascade controlling neurite outgrowth. VPA induces the phosphorylation of c-Jun N-terminal kinase (JNK) and the substrate paxillin, while VPA induction of neurite outgrowth is inhibited by JNK inhibitors (SP600125 and the small JNK-binding peptide) or a paxillin construct harboring a Ser 178-to-Ala mutation at the JNK phosphorylation. Transfection of Gadd45a, acting through the effector MEKK4, leads to the phosphorylation of the JNK cascade. Conversely, knockdown of Gadd45a with siRNA reduces the effect of VPA. Taken together, these results suggest that upregulation of Gadd45a explains one of the mechanisms whereby VPA induces the neurotrophic effect, providing a new role of Gadd45a in neurite outgrowth.  相似文献   

15.
Netrin-1 attracts or repels growing axons during development. The UNC5 receptors mediate the repulsive response, either alone or in complex with DCC receptors. The signaling mechanisms activated by UNC5 are poorly understood. Here, we examined the role of Rho GTPases in UNC5a signaling. We found that UNC5a induced neurite outgrowth in N1E-115 neuroblastoma cells in a netrin-1- and Rac1-dependent manner. UNC5a lacking its cytoplasmic tail also mediated this effect. In fibroblasts, UNC5a was able to activate RhoA and to a lower extent Rac1 and Cdc42 in response to netrin-1. Using Fluorescence Resonance Energy Transfer (FRET) intermolecular probes, we visualized the spatial and temporal activation of Rac1, Cdc42 and RhoA in live N1E-115 cells expressing UNC5a during neurite outgrowth. We found that Rac1 but not Cdc42 was transiently activated at the leading edge of the cell during neurite initiation. However, at later times when well-developed neurites were formed, active RhoA was found in the cell body and at the base of the neuronal leading process in UNC5a-expressing cells. Together, these findings demonstrate that the netrin-1 receptor UNC5a is able to induce neurite outgrowth and to differentially activate RhoA and Rac1 during neurite extension in a spatial and temporal manner.  相似文献   

16.
We have previously shown that the RNA-binding protein HuD binds to a regulatory element in the growth-associated protein (GAP)-43 mRNA and that this interaction involves its first two RNA recognition motifs (RRMs). In this study, we investigated the functional significance of this interaction by overexpression of human HuD protein (pcHuD) or its truncated form lacking the third RRM (pcHuD I+II) in PC12 cells. Morphological analysis revealed that pcHuD cells extended short neurites containing GAP-43-positive growth cones in the absence of nerve growth factor (NGF). These processes also contained tubulin and F-actin filaments but were not stained with antibodies against neurofilament M protein. In correlation with this phenotype, pcHuD cells contained higher levels of GAP-43 without changes in levels of other NGF-induced proteins, such as SNAP-25 and tau. In mRNA decay studies, HuD stabilized the GAP-43 mRNA, whereas HuD I+II did not have any effect either on GAP-43 mRNA stability or on the levels of GAP-43 protein. Likewise, pcHuD I+II cells showed no spontaneous neurite outgrowth and deficient outgrowth in response to NGF. Our results indicate that HuD is sufficient to increase GAP-43 gene expression and neurite outgrowth in the absence of NGF and that the third RRM in the protein is critical for this function.  相似文献   

17.
We have investigated the role of N-methyl-d-aspartate receptors (NMDARs) and γ-aminobutyric acid receptors type A (GABAARs) at an early stage of P19 neuronal differentiation. The subunit expression was profiled in 24-hour intervals with RT-PCR and functionality of the receptors was verified via fluo-3 imaging of Ca2+ dynamics in the immature P19 neurons showing that both NMDA and GABA excite neuronal bodies, but only polyamine-site sensitive NMDAR stimulation leads to enhanced Ca2+ signaling in the growth cones. Inhibition of NR1/NR2B NMDARs by 1 μM ifenprodil severely impaired P19 neurite extension and fasciculation, and this negative effect was fully reversible by polyamine addition. In contrast, GABAAR antagonism by a high dose of 200 μM bicuculline had no observable effect on P19 neuronal differentiation and fasciculation. Except for the differential NMDAR and GABAAR profiles of Ca2+ signaling within the immature P19 neurons, we have also shown that inhibition of NR1/NR2B NMDARs strongly decreased mRNA level of NCAM-180, which has been previously implicated as a regulator of neuronal growth cone protrusion and neurite extension. Our data thus suggest a critical role of NR1/NR2B NMDARs during the process of neuritogenesis and fasciculation of P19 neurons via differential control of local growth cone Ca2+ surges and NCAM-180 signaling.  相似文献   

18.
19.
Neurotrophin-3 (NT-3) is well known to play an important role in facilitating neuronal survival and differentiation during development. However, the mechanisms by which neurotrophin-3 promotes prolonged Akt/MAPK signaling at an early stage are not well understood. Here, we report that NT-3 works at an early stage of neuronal differentiation in mouse neural stem cells (NSCs). After treatment with NT-3 for 12h, more NSCs differentiated into neurons than did untreated cells. These findings demonstrated that stimulation with NT-3 causes NSCs to differentiate into neurons through a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway and the phosphorylated extracellular signal-regulated kinase (ERK) pathway. In addition, treatment with NT-3 induced neurite outgrowth by specific phosphorylation of p38 MAPK, which was accompanied by neuronal differentiation. Taken together, these results suggest that NT-3, along with the Trk C receptors in NSCs, might lead to the survival and neuronal differentiation of NSCs via two distinct downstream signaling pathways at an early stage of neuronal differentiation.  相似文献   

20.
AlphaII-spectrin, a basic component of the spectrin-based scaffold which organizes and stabilizes membrane microdomains in most animal cells, has been recently implicated in cell adherence and actin dynamics. Here we investigated the contribution of αΙΙ-spectrin to neuritogenesis, a highly complex cellular process which requires continuous actin cytoskeleton remodeling and cross-talk between extracellular cues and their cell surface receptors, including cell adhesion molecules. Using RNA interference-mediated gene silencing to down-regulate αΙΙ-spectrin expression in human neuroblastoma SH-SY5Y cells, we observed major changes in neurite morphology and cell shape: (1) reduced mean length and a higher number of neurites per cell; occasional long neurites were thinner and displayed abnormal adhesiveness during cell migration resulting in frequent breaks; similar persisting adhesiveness and breaks were also observed in trailing edges of cell bodies; (2) irregular polygonal cell shape in parallel with loss of cortical F-actin from neuronal cell bodies; (3) reduction in protein levels of αΙ- and βΙ-spectrins, but not βΙΙ-spectrin (4) decreased global expression of adhesion molecule L1 and spectrin-binding adapter ankyrin-B, which links L1 to the plasma membrane. Remarkably, αΙΙ-spectrin depletion affected L1 – but not NCAM – cell surface expression, and L1 clustering at growth cones. This study demonstrates that αΙΙ-spectrin is implicated in normal morphology and adhesive properties of neuron cell bodies and neurites, and in cell surface expression and organization of adhesion molecule L1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号