首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
应用SABC免疫组织化学方法研究67例胃标本中p53和c-myc的表达与多药耐药性(MDR)的关系。结果显示本组胃癌中p53阳性32例,阳性率47.8%;c-myc阳性37例,阳性率55.2%;P-gp阳性39例,阳性率58.2%。p53的异常表达与mdr-1基因表达呈显著正相关(r=0.63,P<0.05),而c-myc和mdr-1的表达无明显相关。提示p53异常表达可增加mdr-1基因的表达,从而使胃癌细胞获得MDR表型  相似文献   

2.
血管平滑肌细胞增殖与Cdk抑制蛋白p27的表达   总被引:4,自引:1,他引:4  
Yuan Y  Xu DL  Liu YL  Jia MY 《生理学报》1999,51(3):285-290
p27蛋白是细胞周期素依赖性激酶(Cdk)抑制蛋白家族中的一种,主要对外部促进或抑制细胞增殖的信号起反应。本研究应用流式细胞仪(FCM)双标记的方法观察血管紧张素Ⅱ(AngⅡ)、血管加压素(AVP)和血小板源生长因子(PDGF)对血管平滑肌细胞(VSMCs)细胞周期百分比和p27蛋白表达量的影响。静止状态培养的VSMCs加入AngⅡ,AVP,PDGFBB后,在不同时间收集细胞,用碘化丙啶(PI)标记细胞DNA,以确定细胞所处的周期。用p27蛋白的单抗和标记了FITC的二抗标记细胞,通过流式细胞仪测定被激发出的荧光量来确定细胞p27蛋白表达的相对量。结果显示,AngⅡ刺激VSMCs增生,其蛋白含量增加了436%(P<001),但不抑制p27蛋白的表达;AVP可轻度抑制p27的表达,有轻度促进VSMCs增殖和增生的作用(P<005);PDGF明显抑制p27的表达,引起细胞增殖。本研究结果提示,p27蛋白抑制VSMCs通过G1期进入S期,是抑制VSMCs增殖的重要调节因子。  相似文献   

3.
根据小麦黄花叶病毒( W Y M V) 核苷酸序列测定结果,将 W Y M V R N A2 上的28 k Da 蛋白基因克隆到p E T11a 上,构建了原核表达载体p E2839 。 S D S P A G E 分析表明,经 I P T G 诱导,28 k Da蛋白基因在大肠杆菌 B L21( D E3)p Lys S 中得到高效表达。以含表达产物的凝胶为抗原,免疫家兔,首次制备了小麦黄花叶病毒 R N A2 蛋白特异性抗血清。  相似文献   

4.
兔阑尾中一种新的21kD的钙结合蛋白的纯化与鉴定   总被引:3,自引:0,他引:3  
纯化与鉴定了B淋巴细胞中一种新的分子量为21kD的钙结合蛋白(CaBP21)。兔阑尾淋巴细胞匀浆经热变性,Phenyl-Sepharose与DEAE-Sepharose柱层析,自每1kg细胞沉积物中获得SDS-PAGE均一的CaBP215.3mg。HCl水解后的酸性氨基酸(Asp+Glu)含量为26%。如同大多数钙结合蛋白一样,N末端封闭阻止其进行Edman降解。CaBP21中疏水性氨基酸(计Gly,不计Trp)约占46%,碱性氨基酸10%,酸性氨基酸与极性氨基酸约44%。CaBP21有较高的Ser、Tyr含量。肽谱分析等确证CaBP21为2个相同或相似亚基二聚体。以ArsenazoⅢ作Ca2+结合分析表明每分子CaBP21可结合4分子Ca2+,对Ca2+的结合常数约为10-5mol/L。各种性质表明CaBP21是一种不同于其他已知钙结合蛋白的新钙结合蛋白。  相似文献   

5.
CpG免疫调节序列最新研究进展   总被引:5,自引:0,他引:5  
施海晶  胡云章 《生命科学》2000,12(5):203-206
细菌等非脊椎动物的DNA和人工合成的寡聚核苷酸(ODN)中所包含的免疫刺激CpG序列(CpG-S)被抗原呈递细胞(APC)摄入后,经由pH依赖的胞内体酸化,产生活性氧(ROS),然后分别活化转录因子AP-1和NF-λB,激活细胞因子等基因的表达,从而刺激机体产生免疫应答,包括刺激多种免疫活性细胞分泌细胞因子,使机体产生快速高水平的抗体应答及细胞免疫应答。能产生这种刺激作用的最适序列为CpG5’端为  相似文献   

6.
PCR—SSCP检测肺癌细胞p53基因点突变   总被引:2,自引:0,他引:2  
应用溴化乙锭(EB)染色的PCR-SSCP技术对10例非小细胞性肺癌组织标本p53基因外显子5 ̄8进行分析,其中1例在外显子5 ̄6;1例在外显子7;2例在外显子8发现异常电泳带。对1例经SSCP检测异常的p53基因进行核酸序列分析,发现第280位密码子ACA,其编码的氨基酸由丝氨酸变成半胱氨酸。结果证实:非小细胞性肺癌与p53基因突变有关;EB法PCR-SSCP技术是一种简便、可靠的点突变检测法。  相似文献   

7.
为了进一步阐明SPD对大鼠纹状体突触后D1受体的激动作用特性,本文应用反磷酸化在体内测定及放射配体结合方法,分别观察SPD对6OHDA损毁大鼠纹状体DARPP32体内磷酸化作用及突触后D1受体密度的影响。结果表明:皮下给予SPD(20,40mg/kg,21d),损毁侧纹状体DARPP32体外[32P]的掺入量较健侧下降50%(P<001)。换言之,损毁侧纹状体内DARPP32的磷酸化程度增加了。然而,SPD使损毁导致D1受体上调的作用减弱(Bmax从3850±261fmol/mg降至3197±201fmol/mg水平)。因此,SPD激动D1受体,使6OHDA损毁大鼠纹状体内DARPP32磷酸化作用加强,而受体密度减少。这是SPD调节脑内D1受体信号转导功能的重要机制。  相似文献   

8.
pH敏脂质体对反义寡核苷酸抗流感病毒活性的影响   总被引:5,自引:0,他引:5  
为了研究具有临床应用前景的 A S O D N 脂质体转运系统,以临床药用大豆磷脂为主要原料制备了p H 敏脂质体,并测定了脂质体体外转染活性、p H 敏特性、细胞毒性和对 A S O D N 抗流感病毒活性的影响 结果发现,批号为 98051903,98051102 和 98051202 的脂质体具有较高转染活性,但只有lipofectin 转染活性的 1/50~1/100当质粒/脂质体( W / W )为 1∶4~1∶8,转染时间为 3~5 h,质粒量为 05 μg,转染后 24~48 h 内检测时转染活性最高 脂质体 98051202 表现明显 p H值依赖溶解红细胞膜特性,而脂质体 98051102 和 98051903 的 p H 敏特性不明显 脂质体细胞毒性明显降低,如 98051903、98051102 和 98051202 的毒性分别是 lipofectin 毒性的 1/16、1/8 和 1/4p H 敏脂质体 98051202 具有促进 A S O D N 抗流感病毒作用,当 A S O D N 浓度为 02 μm ol/ L 时,p H 敏脂质体 98051202 使其抗病毒活性提高 5 倍,但 A S O D N 浓度较高时p H 敏脂质体对 A S O D N抗  相似文献   

9.
p53最早发现于SV40转化的细胞系,后来几乎在所有不同类型的细胞内均检测到这种蛋白质,野生型P58是一种有效的肿瘤抑制因子,但突变体p52可与ras-肿瘤基因协同转化体外的腺代细胞,而且在肿瘤发生时常伴随有p53基因的突变。乳腺癌内,p53基因的突变率为40%,并可见到某些肿瘤基因参与癌症的形成过程,暗示p53基因结构和功能的改变可能与这些基因的重排和扩增有关。本实验选择4种不同年龄的172~(Arg-Leu)突变型p53转基因小鼠为受试动物,将同系动物的垂体腺植入小鼠的肾脏后,再以致癌剂DMBA处理,以使动物乳腺内的p53基因表达和诱导小鼠乳腺癌形成。从乳腺癌小鼠分别摘取乳腺组织,提取DNA和RNA,以H-ras、PCNA、CylinD1、p53基因的DNA片段作为特异性核酸探针,进行SouthermBlotting和NorthernBlotting分析,以检测在突变体P53表达的情况下,PCNA、H-ras、CyinD1等基因在体内的变化规律。实验发现,在4组不同的受试动物中,其乳腺癌细胞的PCNA和H-ras两种基因发生了基因重排,特征是其DNA标本中分别出现了一条很强的额外杂交带,但对照动物乳腺该类  相似文献   

10.
为分析NMDA和非NMDA受体在介导脊髓不同性质疼痛的机能分化,应用微透析技术,测量刺激皮肤和肌肉神经引起的天门冬氨酸(Asp)和谷氨酸(Glu)在脊髓背角的释放。电刺激皮肤神经兴奋C纤维诱发的Asp和Glu的释放分别是基础值的(323±55)%(P<001)和(169±16)%(P<005);电刺激肌肉神经兴奋C纤维诱发的Asp和Glu的释放分别是基础值的(150±16)%(P<001)和(218±42)%(P<005)。兴奋皮肤传入引起的Asp释放明显高于Glu的释放(约3倍);而兴奋肌肉传入引起的Glu释放明显高于Asp的释放(约2倍)。从而提示,皮肤伤害性传入主要引起Asp的释放增加,而肌肉的伤害性传入则主要引起Glu的释放增加,它们分别主要作用于NMDA和非NMDA受体而介导不同的痛传入信息。  相似文献   

11.
12.
Irradiation with ultraviolet (UV) triggers programmed cell death (apoptosis) in keratinocytes. This process is believed to protect against skin carcinogenesis since the cells with damaged DNA are selectively removed, limiting the likelihood of the development of a malignant keratinocyte clone. The p53 protein is able to detect mutation-bearing DNA fragments and is thus indispensable for the UV-induced apoptosis in the epidermis. Since age is a risk factor for the development of skin tumors we investigated whether ultraviolet induces apoptosis and p53 activation in senescent keratinocytes. Cultured senescent keratinocytes were irradiated with broad-band ultraviolet, apoptosis was assessed using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling) technique and the p53 activation pattern was determined with Western blotting and immunofluorescent staining with a panel of anti-p53 antibodies recognising different conformational forms of the protein (PAb 122, PAb 240, DO-7). In senescent keratinocytes arrested in the G1 phase of cell cycle, ultraviolet irradiation (100-2000 J/m2) caused accumulation and nuclear translocation of p53. However, in contrast to young cells where UV induces apoptotic cell death in G1, apoptosis was not detected in senescent cells. There were subtle differences in the p53 activation pattern between senescent keratinocytes and known patterns in young keratinocytes and other cell types. In senescent keratinocytes a constitutional nuclear expression of p53 (conformational form recognized by PAb 240) was present and the p53 induction in response to ultraviolet radiation was rapid. Suppression of apoptosis in senescent keratinocytes may be an important mechanism responsible for enhanced skin carcinogenesis in old age.  相似文献   

13.
UV or gamma irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin-dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21 function.  相似文献   

14.
UV or g irradiation mediated DNA damage activates p53 and induces cell cycle arrest. Induction of cyclin dependent kinase inhibitor p21WAF1 by p53 after DNA damage plays an important role in cell cycle arrest after gamma irradiation. The p53 mediated cell cycle arrest has been postulated to allow cells to repair the DNA damage. Repair of UV damaged DNA occurs primarily by the nucleotide excision pathway (NER). It is known that p21WAF1 binds PCNA and inhibits PCNA function in DNA replication. PCNA is also required for repair by NER but there have been conflicting reports on whether p21WAF1 can inhibit PCNA function in NER. It has therefore been difficult to integrate the UV induced cell cycle arrest by p21 in the context of repair of UV damaged DNA. A recent study reported that p21WAF1 protein is degraded after low but not high doses of UV irradiation, that cell cycle arrest after UV is p21 independent, and that at low dose UV irradiation p21WAF1 degradation is essential for optimal DNA repair. These findings shed new light on the role of p21 in the cellular response to UV and clarify some outstanding issues concerning p21WAF1 function.  相似文献   

15.
p33ING1b是一个较晚发现的肿瘤抑制基因ING1的主要表达形式,自从被成功克隆以后得到了广泛的研究,已有的研究表明,p33ING1b参与了细胞的生长抑制、凋亡、染色质重塑、DNA损伤修复、肿瘤抑制和细胞衰老等。但是它在细胞衰老过程中的作用特别是对衰老细胞DNA损伤修复的影响还没有被地阐明,在本研究中,我们首先用2BS细胞构建了细胞衰老模型,通过RT-PCR和Western blot技术证实p33ING1b在衰老细胞中的表达水平是下调的,然后通过构建和包装包含p33ING1b基因的腺病毒,将p33ING1b导入年轻和衰老细胞中并使其过表达,用HCR(host cell reactivation)方法检测年轻细胞和衰老细胞DNA损伤修复能力。我们的实验首次表明,相对于年轻细胞,p33ING1b的过表达使衰老细胞的DNA的损伤修复能力显著增加,这说明p33ING1b在衰老细胞中的表达下调与衰老细胞DNA损伤修复能力的下降有关,也进一步证实了p33ING1b在细胞衰老过程中起着十分重要的作用。  相似文献   

16.
To answer what is a critical event for higher incidence of tumor development in old than young individuals, primary culture of human diploid fibroblasts were employed and DNA damage was induced by doxorubicin or X-ray irradiation. Response to the damage was different between young and old cells; loss of p21(sdi1) expression in spite of p53(S1?) activation in old cells along with [3H]thymidine and BrdU incorporation, but not in young cells. The phenomenon was confirmed by other tissue fibroblasts obtained from different donor ages. Induction of miR-93 expression and reduced p53 binding to p21 gene promoter account for loss of p21(sdi1) expression in senescent cells after DNA damage, suggesting a mechanism of in vivo carcinogenesis in aged tissue without repair arrest.  相似文献   

17.
p53 can play a key role in response to DNA damage by activating a G1 cell cycle arrest. However, the importance of p53 in the cell cycle response to UV radiation is unclear. In this study, we used normal and repair-deficient cells to examine the role and regulation of p53 in response to UV radiation. A dose-dependent G1 arrest was observed in normal and repair-deficient cells exposed to UV. Expression of HPV16-E6, or a dominant-negative p53 mutant that inactivates wildtype p53, caused cells to become resistant to this UV-induced G1 arrest. However, a G1 to S-phase delay was still observed after UV treatment of cells in which p53 was inactivated. These results indicate that UV can inhibit G1 to S-phase progression through p53-dependent and independent mechanisms. Cells deficient in the repair of UV-induced DNA damage were more susceptible to a G1 arrest after UV treatment than cells with normal repair capacity. Moreover, no G1 arrest was observed in cells that had completed DNA repair prior to monitoring their movement from G1 into S-phase. Finally, p53 was stabilized under conditions of a UV-induced G1 arrest and unstable when cells had completed DNA repair and progressed from G1 into S-phase. These results suggest that unrepaired DNA damage is the signal for the stabilization of p53, and a subsequent G1 phase cell cycle arrest in UV-irradiated cells.  相似文献   

18.
Nucleotide excision repair (NER), the most versatile and ubiquitous mechanism for DNA repair, operates to remove many types of DNA base lesions. We have studied the role of p53 function in modulating the repair of DNA damage following UV irradiation in normal and p53-compromised human mammary epithelial cells (HMEC). The effect of UV-induced DNA damage on cellular cytotoxicity and apoptosis was determined in conjunction with global, gene- and strand-specific repair. Cytotoxicity studies, using clonogenic survival and MTT assays, showed that HPV-16 E6-expressing HMEC were more UV sensitive than p53-WT cell lines. High apoptotic index obtained with p53-compromised cells was in conformity to both the low clonogenic survival and the low cellular viability. No discernible differences in the formation of initial UV-induced cyclobutane pyrimidine dimers (CPD) were observed in the cell lines of varying p53 functional status. However, the extent and the rate of damage removal from genome overall were highest for p53-WT cells. Further examination of strand-specific repair in the p53 gene revealed that the removal of CPD in the non-transcribed strand (NTS) was slower in p53-compromised cells compared to the normal p53-WT cell lines. These results suggest that loss of p53 function, in the absence of other genetic alterations, decreased both overall amount of CPD repaired and their removal rate from the genome. Additionally, normal function of p53 is required for the repair of the NTS, but not of the transcribed strand (TS) in genomic DNA in human epithelial cells. Thus, failure of quantitative removal of CPD by global genomic repair (GGR), due to loss of p53 function, causes the enhanced UV sensitivity and increased damage-induced apoptosis via a p53-independent pathway. Nevertheless, recovery of cells from UV damage requires normal p53 function and efficient GGR.  相似文献   

19.
Cellular senescence is a state of permanent replicative arrest that allows cells to stay viable and metabolically active but resistant to apoptotic and mitogenic stimuli. Specific, validated markers can identify senescent cells, including senescence-associated β galactosidase activity, chromatin alterations, cell morphology changes, activated p16- and p53-dependent signaling and permanent cell cycle arrest. Senescence is a natural consequence of DNA replication-associated telomere erosion, but can also be induced prematurely by telomere-independent events such as failure to repair DNA double strand breaks. Here, we review the molecular pathways of senescence onset, focussing on the changes in chromatin organization that are associated with cellular senescence, particularly senescence-associated heterochromatin foci formation. We also discuss the altered dynamics of the DNA double strand break response within the context of aging cells. Appreciating how, mechanistically, cellular senescence is induced, and how changes to chromatin organization and DNA repair contributes to this, is fundamental to our understanding of the normal and premature human aging processes associated with loss of organ and tissue function in humans.  相似文献   

20.
The cellular function of p53 is complex. It is well known that p53 plays a key role in cellular response to DNA damage. Moreover, p53 was implicated in cellular senescence, and it was demonstrated that p53 undergoes modification in senescent cells. However, it is not known how these modifications affect the ability of senescent cells to respond to DNA damage. To address this question, we studied the responses of cultured young and old normal diploid human fibroblasts to a variety of genotoxic stresses. Young fibroblasts were able to undergo p53-dependent and p53-independent apoptosis. In contrast, senescent fibroblasts were unable to undergo p53-dependent apoptosis, whereas p53-independent apoptosis was only slightly reduced. Interestingly, instead of undergoing p53-dependent apoptosis, senescent fibroblasts underwent necrosis. Furthermore, we found that old cells were unable to stabilize p53 in response to DNA damage. Exogenous expression or stabilization of p53 with proteasome inhibitors in old fibroblasts restored their ability to undergo apoptosis. Our results suggest that stabilization of p53 in response to DNA damage is impaired in old fibroblasts, resulting in induction of necrosis. The role of this phenomenon in normal aging and anticancer therapy is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号