共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of the herbicide 2,4-dichlorophenoxy acetic acid (2,4-D) on haemocyte DNA of in vivo treated mussels Mytilus galloprovincialis has been investigated by flow cytometry and epifluorescence microscopy. Haemocyte proliferation and atypical flow cytometric DNA histograms were observed in mussels treated with 20 and 100 μg/g of 2,4-D. The stimulation of proliferation by 2,4-D was also obvious by DNA labelling with BrdU followed by FITC conjugated anti-BrdU MoAb visualised by epifluorescence microscopy. An apoptotic sub-G1 peak resulted in mussels that were exposed to higher doses of herbicide at 100 and 500 μg/g as well as subpopulation could be detected by flow cytometric analysis. In these experiments morphological changes characteristic for apoptotic cells were looked for by fluorescence microscopy. A low percentage of cells in S as well as in G2M phase indicating G1 arrest were detected in haemocytes from these mussels that had survived 4 days of 20 μg/g 2,4-D exposure. In addition, sister-chromatid exchanges (SCE) could be seen with the immunolabelling BrdU method. Thus, in vivo treatment and the subsequent uptake of 2,4-D causes serious genetic consequences and raises concerns regarding the potential overall fitness and health effects in mussel populations. 相似文献
2.
The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) application rate on microbial community structure and on the diversity of dominant 2,4-D degrading bacteria in an agricultural soil was examined using cultivation-independent molecular techniques coupled with traditional isolation and enumeration methods. Fingerprints of microbial communities established under increasing concentrations of 2,4-D (0-500 mg kg-1) in batch soil microcosms were obtained using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments. While a 2,4-D concentration of at least 100 mg kg-1 was required to obtain an apparent change in the community structure as visualized by DGGE, the greatest impact of 2,4-D concentration occurred in the 500 mg kg-1 treatment, resulting in significantly reduced diversity of the dominant populations and enrichment by Burkholderia-like populations. The greatest diversity of 2,4-D degrading isolates was cultivated from the 10 mg kg-1 treatment, indicating that under these conditions, cultivation was more sensitive than DGGE for detecting changes in community structure. Most of these isolates harbored homologs of Ralstonia eutrophus JMP134 and Burkholderia cepacia tfdA catabolic genes. Results from this study revealed that agriculturally relevant application rates of 2,4-D may provide a temporary selective advantage for organisms capable of utilizing 2,4-D as a carbon and energy source. 相似文献
3.
4.
The key role of telluric microorganisms in pesticide degradation is well recognized but the possible relationships between the biodiversity of soil microbial communities and their functions still remain poorly documented. If microorganisms influence the fate of pesticides, pesticide application may reciprocally affect soil microorganisms. The objective of our work was to estimate the impact of 2,4-D application on the genetic structure of bacterial communities and the 2,4-D-degrading genetic potential in relation to 2,4-D mineralization. Experiments combined isotope measurements with molecular analyses. The impact of 2,4-D on soil bacterial populations was followed with ribosomal intergenic spacer analysis. The 2,4-D degrading genetic potential was estimated by real-time PCR targeted on tfdA sequences coding an enzyme specifically involved in 2,4-D mineralization. The genetic structure of bacterial communities was significantly modified in response to 2,4-D application, but only during the intense phase of 2,4-D biodegradation. This effect disappeared 7 days after the treatment. The 2,4-D degrading genetic potential increased rapidly following 2,4-D application. There was a concomitant increase between the tfdA copy number and the 14C microbial biomass. The maximum of tfdA sequences corresponded to the maximum rate of 2,4-D mineralization. In this soil, 2,4-D degrading microbial communities seem preferentially to use the tfd pathway to degrade 2,4-D. 相似文献
5.
Litz R.E. Hendrix R.C. Moon P.A. Chavez V. M. 《Plant Cell, Tissue and Organ Culture》1998,53(1):13-18
The nucellus was removed from immature seeds of 4 mango genotypes, andcultured under different induction conditions. The mango
genotypes includedpolyembryonic ‘Hindi’ and ‘Nam Doc Mai’ and monoembryonic ‘Lippens’ and’Tommy Atkins‘. Nucellar explants
were cultured on modified B5 basal mediumunder the following inductive conditions: 1) 4.52 μM 2,4-D; 2) nogrowth regulator
(control); 3) 4.52 μM 2,4-D + embryogenic ‘Parris‘nurse culture; 4) no growth regulator + embryogenic ‘Parris’ nurse culture.Induction
of embryogenic competence was mediated by 4 factors: genotype,explanting, 2,4-D and the presence of a highly embryogenic nurse
culture,although there was considerable difference in genotype response. ‘Hindi’ hadthe greatest embryogenic potential, followed
by ‘Lippens’, ‘Tommy Atkins‘and ‘Nam Doc Mai’, respectively. Induction of embryogenic cultures of allgenotypes at low frequency
occurred as a result of explanting excisednucellus onto control medium. The most effective treatment for inducingembryogenic
cultures was 2,4-D + embryogenic ‘Parris’ nurse culture with’Hindi’, ‘Lippens’ and ‘Nam doc Mai’, with the exception of ‘Tommy
Atkins’,in which the treatment with 2,4-D alone was most effective.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
6.
Zipper C Bolliger C Fleischmann T Suter MJ Angst W Müller MD Kohler HP 《Biodegradation》1999,10(4):271-278
Aerobic degradation experiments with the racemic mixtures of mecoprop and dichlorprop revealed that activated sludge collected from the aeration tank of a municipal waste water treatment plant degraded both enantiomers of mecoprop and dichlorprop within 7 days, albeit in an enantioselective manner; the (S) enantiomers were preferentially degraded. Mecoprop, dichlorprop, and 2,4-D were completely metabolized under aerobic conditions, as shown by the 86–98% elimination of dissolved organic carbon. Under anaerobic conditions, the concentration of 2,4-D decreased exponentially with a first-order reaction rate constant of 0.24 per day and without a lag-phase. After an incubation time of 17 days, 2,4-D was completely removed. 2,4-Dichlorophenol was the main metabolite of anaerobic 2,4-D degradation; only traces of 4-chlorophenol were detected. In contrast, the chiral phenoxypropionic acid herbicides mecoprop and dichlorprop persisted under anaerobic conditions during 49 days of incubation. 相似文献
7.
《Biotechnic & histochemistry》2013,88(3-4):202-207
AbstractWe studied the eco-toxic and carcinogenic effects of a commonly used 2,4-D acid iso-octylester herbicide on rat liver and pancreas. The rats in Group 1 were fed a standard feed and the rats in Group 2 were fed with standard feed to which was added 200 mg/kg/day 2,4-D acid iso-octylester for 16 weeks. Azaserine, 30 mg/kg/body weight, was injected into rats of Groups 3 and 4 to investigate the effects of 2,4-D acid iso-octylester on the development of neoplasms. After feeding the rats with neoplasms in Group 4 with food including 200 mg/kg/day 2,4-D acid iso-octylester for 16 weeks, an autopsy was carried out on all animals. We found that 2,4-D acid iso-octylester caused the formation of atypical cell foci (ACF) in the pancreata and livers of rats. ACF that were formed experimentally by exposure to azaserine had increased diameter, volume and number of atypical cell foci/mm2 and mm3 after exposure to 2,4-D acid iso-octylester. Our observations indicated that this herbicide potentially is a cancer initiator. 相似文献
8.
Kumariah Manoharan Thirupathi Karuppanapandian Pritam Bala Sinha Rajendra Prasad 《Journal of Plant Biology》2005,48(4):394-403
We investigated 2,4-D-induced leaf senescence in young mustard seedlings. A set of morphometric, biochemical and molecular
parameters were analyzed to characterize senescence markers. In accordance with earlier reports, chloroplast-membrane degradation
marked the early phase of leaf senescence based on the analysis of the galactolipid fraction. Degradation of grana occurred
earlier to that of the envelope, as revealed by the relative level of their specific galactolipids, namely, monogalactosyl
diglyceride and digalactosyl diglyceride. Phospholipids showed extensive degradation resulting in the accumulation of lyso-derivatives
of major phospholipids and phosphatidic acid (PA) in senescing leaves. Catalase activity was stimulated by 2,4-D and reflected
scavenging of reactive oxygen species. Nuclear DNA degradation, a previously known death signal that represented a point of
no return from progression of senescence, occurred late on the 4th day subsequent to 2,4-D supplementation. AgNO3, an inhibitor of ethylene biosynthesis, inhibited leaf senescence by ca. 54% based on PA content Involvement of 2,4-D, ethylene
and abscisic acid in leaf senescence is discussed in relation to hormonal interplay. 相似文献
9.
Established red maple (Acer rubrum L.) callus was cultured on media varying in auxin (NAA or 2,4-D) and cytokinin (BA) concentrations. Callus growth was positively affected by the presence of both an auxin and cytokinin in the medium. Optimal growth depended on the ratio of cytokinin/auxin as well as the total amount of plant growth regulators in the medium.Abbreviations (NAA)
naphthaleneacetic acid
- (2,4-D)
2,4-dichlorophenoxyacetic acid
- (BA)
and 6-benzylaminopurine 相似文献
10.
The effect of 2,4-dichlorophenol (DCP) was studied on the fully hydrated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)--water liposomes. The structure and the thermotropic phase behaviour of the liposomes was examined in the presence of DCP (DCP/DPPC molar ratio, varied from 2x10(-2) up to 1) using small- and wide-angle X-ray scattering (SAXS, WAXS) and freeze-fracture electron microscopy. The structural behaviour of the DPPC/DCP/water system was strongly dependent on the concentration of the DCP. In the pretransition range the DCP molecules (at 2x10(-2) DCP/DPPC molar ratio) induced the interdigitated phase beside the parent (gel and rippled gel) phases, locally which can be form at higher DCP concentration. When the DCP/DPPC molar ratio was increased the pretransition disappeared and the main transition was shifted to lower temperatures. In the molar ratio range from 2x10(-1) up to 5x10(-1), a coexistence of different phases was observed in the wide temperature range from 20 up to 40 degrees C. With a further increase of the DCP/DPPC molar ratio (6x10(-1) to 1) only the interdigitated gel phase occurred below 25 degrees C. A schematic phase diagram of DPPC/DCP/water system was constructed to summarise the results. 相似文献
11.
Piccolo A Conte P Cozzolino A Paci M 《Journal of industrial microbiology & biotechnology》2001,26(1-2):70-76
Phenoxyalkanoic acids are a widely used class of herbicides. This work employed high-resolution 13C NMR to study the structural changes induced by humic substances and horseradish perodixase on 2,4-dichorophenoxyacetic acid
(2,4-D) 13C-labelled in the side chain. NMR spectra showed that humic substances chemically catalyze abiotic splitting of [13C]2,4-D into 2,4-dichlorophenol and [13C]acetic acid at pH 7 but not at pH 4.7. Peroxidase did not catalyze the oxidative degradation of [13C]2,4-D at any pH tested and inhibited the effect of humic substances. Catalytic degradation by humic substances was attributed
to free-radical reactions enhanced by the stereochemical contribution of large conformational structures formed by heterogeneous
humic molecules at neutral pHs. Inhibition of 2,4-D degradation when humic substances were combined with peroxidase was explained
by modification of both chemical and conformational humic structure due to peroxidase-promoted oxidative cross-coupling among
humic molecules. Our findings show for the first time that the abiotic degradation of 2,4-D is catalyzed by dissolved humic
substances at neutral pH. Journal of Industrial Microbiology & Biotechnology (2001) 26, 70–76.
Received 09 February 2000/ Accepted in revised form 22 May 2000 相似文献
12.
New insights into the ultrastructure, permeability, and integrity of conodont apatite determined by transmission electron microscopy 总被引:1,自引:0,他引:1
JULIE A. TROTTER JOHN D. FITZ GERALD HARRI KOKKONEN CHRISTOPHER R. BARNES 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2007,40(2):97-110
New crystalline structures have been observed in argon ion‐milled conodont elements from a diverse suite of Ordovician taxa (‘Cordylodus robustus’, Drepanoistodus suberectus, Panderodus gracilis, Plectodina? sp., Aphelognathus sp., Periodon aculeatus), using transmission electron microscopy (TEM). Electron diffraction patterns of albid tissue reveal that the component crystals are extraordinarily large, in the order of hundred(s) of microns. These large albid crystals show typical cancellate porosity, although a distinctly lamellar structure has also been observed within a large albid crystal positioned between hyaline lamellar and cancellate albid tissues. There is a distinct absence of ‘interlamellar space’ within all hyaline tissues examined, which are characterized by a polycrystalline matrix of micron‐scale elongate crystals that are both strongly aligned and tightly bound within a broader lamellar structure. Optical opacity, caused by light scattering within large (≥ 0.5 µm) pores, is also a feature of both albid and polycrystalline lamellar crown tissues. Accordingly, conodont hard tissues are differentiated by crystal size and shape, as well as inter‐ and intracrystalline porosity. These new observations highlight the structural complexities of conodont histologies and the need for more comprehensive investigations particularly of transitional crown tissues, which are not well defined by terms typically used in the literature. Their histological structures are interpreted to be a product of in vivo crystallization and thus provide new insights into the relative porosity, permeability, and inherent integrity of the tissues as well as their growth relationships. Accordingly, these data not only have implications for earlier histological and palaeobiological interpretations of conodont hard tissues but are also fundamental in determining their chemical integrity, which is crucial for characterizing palaeoseawater composition and palaeoenvironmental change. The potential for conodont apatite to retain primary chemical information depends on crystal size and permeability, so the large albid crystal domains are consistent with parallel geochemical studies that suggest that cancellate albid crown is more resistant to diagenetic modification. 相似文献
13.
Relative importance of the effect of 2,4-D,glyphosate, and environmental variables on the soil microbial biomass 总被引:2,自引:0,他引:2
Two post-emergence herbicides (glyphosate and 2,4-D) were applied at field application levels to tilled field plots in a mixed cropping area in south-central Alberta. The effects of these chemicals on certain variables associated with microbial biomass and activity were monitored in these plots (as well as corresponding control plots) for 45 days. Glyphosate did not influence any of the microbial variables tested. Addition of 2,4-D significantly influenced all microbial variables investigated but these effects were transient, being detectable only within the first 1–5 days of herbicide addition. The effects of 2,4-D addition on the microbial variables tested, even when significant, were typically small and probably of little ecological consequence especially when spatial and temporal variation in these variables is taken into account. 相似文献
14.
Comparative effects of the herbicides dicamba, 2,4-D and paraquat on non-green potato tuber calli 总被引:2,自引:0,他引:2
Peixoto FP Gomes-Laranjo J Vicente JA Madeira VM 《Journal of plant physiology》2008,165(11):1125-1133
The effects of the herbicides 1,1'-dimethyl-4,4'-bipyridylium dichloride (paraquat), 3,6-dichloro-2-metoxybenzoic acid (dicamba) and 2,4-dichlorophenoxyacetic acid (2,4-D) on cell growth of non-green potato tuber calli are described. We attempted to relate the effects with toxicity, in particular the enzymes committed to the cellular antioxidant system. Cell cultures were exposed to the herbicides for a period of 4 weeks. Cellular integrity on the basis of fluorescein release was strongly affected by 2,4-D, followed by dicamba, and was not affected by paraquat. However, the three herbicides decreased the energy charge, with paraquat and 2,4-D being very efficient. Paraquat induced catalase (CAT) activity at low concentrations (1muM), whereas at higher concentrations, inhibition was observed. Dicamba and 2,4-D stimulated CAT as a function of concentration. Superoxide dismutase (SOD) activity was strongly stimulated by paraquat, whereas dicamba and 2,4-D were efficient only at higher concentrations. Glutathione reductase (GR) activity was induced by all the herbicides, suggesting that glutathione and glutathione-dependent enzymes are putatively involved in the detoxification of these herbicides. Paraquat slightly inhibited glutathione S-transferase (GST), whereas 2,4-D and dicamba promoted significant activation. These results indicate that the detoxifying mechanisms for 2,4-D and dicamba may be different from the mechanisms of paraquat detoxification. However, the main cause of cell death induced by paraquat and 2,4-D is putatively related with the cell energy charge decrease. 相似文献
15.
Neville J. Pinfield Jesus O. Sanchez-Torres Christopher N. McDermott 《Plant Growth Regulation》1984,2(2):99-109
Swelling of the hypocotyl base induced by 2,4-D in seedlings of marrow was much reduced if GA3 was also present in the incubation medium. At appropriate concentrations kinetin also counteracted this 2,4-D effect, although at higher concentrations appeared to be ineffective. GA3 was also able to overcome the inhibitory effects of 2,4-D on extension growth in the hypocotyl but kinetin was much less effective in this case. None of the treatments employed was able to alleviate the inhibition of radicle extension induced by 2,4-D.Ethephon induced similar responses in the seedlings to those resulting from 2,4-D treatment, while treatment with a mixture of 2,4-D and CoCl2 removed many of these growth abnormalities. These observations are interpreted as indicating that 2,4-D operates at least partly by stimulating the production of ethylene in the tissues. 2,4-D strongly inhibited the accumulation of endogenous gibberellin during the period of seedling development examined, but enhanced cytokinin levels during the later stages of the same period. The possibility of interactions at the biosynthetic level between gibberellins, cytokinins and ethylene and their involvement in the regulation of seedling development are discussed. 相似文献
16.
Iglesias-Guimarais V Gil-Guiñon E Gabernet G García-Belinchón M Sánchez-Osuna M Casanelles E Comella JX Yuste VJ 《The Journal of biological chemistry》2012,287(10):7766-7779
Apoptotic cell death is characterized by nuclear fragmentation and oligonucleosomal DNA degradation, mediated by the caspase-dependent specific activation of DFF40/CAD endonuclease. Here, we describe how, upon apoptotic stimuli, SK-N-AS human neuroblastoma-derived cells show apoptotic nuclear morphology without displaying concomitant internucleosomal DNA fragmentation. Cytotoxicity afforded after staurosporine treatment is comparable with that obtained in SH-SY5Y cells, which exhibit a complete apoptotic phenotype. SK-N-AS cell death is a caspase-dependent process that can be impaired by the pan-caspase inhibitor q-VD-OPh. The endogenous inhibitor of DFF40/CAD, ICAD, is correctly processed, and dff40/cad cDNA sequence does not reveal mutations altering its amino acid composition. Biochemical approaches show that both SH-SY5Y and SK-N-AS resting cells express comparable levels of DFF40/CAD. However, the endonuclease is poorly expressed in the cytosolic fraction of healthy SK-N-AS cells. Despite this differential subcellular distribution of DFF40/CAD, we find no differences in the subcellular localization of both pro-caspase-3 and ICAD between the analyzed cell lines. After staurosporine treatment, the preferential processing of ICAD in the cytosolic fraction allows the translocation of DFF40/CAD from this fraction to a chromatin-enriched one. Therefore, the low levels of cytosolic DFF40/CAD detected in SK-N-AS cells determine the absence of DNA laddering after staurosporine treatment. In these cells DFF40/CAD cytosolic levels can be restored by the overexpression of their own endonuclease, which is sufficient to make them proficient at degrading their chromatin into oligonucleosome-size fragments after staurosporine treatment. Altogether, the cytosolic levels of DFF40/CAD are determinants in achieving a complete apoptotic phenotype, including oligonucleosomal DNA degradation. 相似文献
17.
Ted T. Sakai James M. Riordan Jerry D. Glickson 《Biochimica et Biophysica Acta (BBA)/General Subjects》1983,758(2):176-180
The role of the cationic dimethylsulfonium group of Abeomycin A2 in the binding of the drug to poly(dA-dT) has been investigated b proton NMR studies on the S-demethyated derivative. In contrast to the parent drug, the demethyl congener shows no intercalation of the aromatic bithiazole group which is adjacent to the former cationic group. However, chemical studies show that the demethyl derivative retains the capability to degrade DNA in the presence of iron(II), albeit at a reduced rate and to a lesser extent than the intact bleomycin A2. Thus, the cationic group is necessary for the intercalation of the bithiazole portion of the drug molecule; however, intercalation is not essential for the degradation of DNA. 相似文献
18.
The interactions of DNA with histone H4 and with its fragments N-H4 (1-84) and C-H4 (85-102) have been studied by using electrooptical techniques, viscosity and electron microscopy. Electron microscopy reveals that histone H4 induces a large folding of DNA molecules : this is in agreement with electrooptical measurements which indicate that, with the increase of their ratio, H4/DNA complexes undergo a gradual process of condensation. Viscosity measurements show that complexes at ratios up to 0.20-0.25 become more rigid as compared to DNA. It appears that C-H4, and not the N-H4 fragment, causes a great distorsion to the structure of DNA, accompanied by an increase of rigidity at ratios up to 0.20-0.25, as occurs for H4/DNA complexes. Electrooptical studies of C-H4/DNA complexes show, along a range of histone/DNA ratios, an important permanent dipole component. These effects reveal a particular mode of interaction of C-H4 with DNA, indicating that some charged residues of the peptide are kept distant enough from the DNA backbone. As no dipole character, in addition to that shown for DNA, has been detected for H4/DNA complexes, it is concluded that the conformation of the H4 molecule modifies to some extent the interaction of the C-terminal region. Our results show that this histone, and particularly its C-terminal region, is important as a determinant factor in the folding of DNA within artificial complexes. 相似文献
19.
Ji Young Lee 《Biochemical and biophysical research communications》2009,390(4):1361-1366
We previously reported that UV induced rapid proteasomal degradation of p21 protein in an ubiquitination-independent manner. Here, UV-induced p21 proteolysis was found to occur in the cytosol. Before cytosolic degradation, however, p21 protein translocated to and transiently accumulated in the nucleus. Nuclear translocation of p21 was not required for its degradation, but rather promoted DNA repair and cell survival. Overexpression of the wild type p21, but not the one with defective nuclear localization signal (NLS), reduced UV-induced DNA damage and cell death. Some of p21 protein translocated to the nucleus were associated with chromatin-bound PCNA and saved from UV-induced proteolysis. These data together show that p21 translocates to the nucleus to participate in DNA repair, while the rest is rapidly degraded in the cytosol. We propose that our findings reflect a mechanism to facilitate removal of damaged cells, enhancing DNA repair at the same time. 相似文献
20.
Niusha Abbasi Gamasaee Hawzheen A. Muhammad Elahe Tadayon Mahsa Ale-Ebrahim Mirsasan Mirpour Majid Sharifi 《Journal of biomolecular structure & dynamics》2020,38(12):3676-3686
AbstractNickel oxide nanoparticles (NiO NPs) have received great interests in medical and biotechnological applications. However, their adverse impacts against biological systems have not been well-explored. Herein, the influence of NiO NPs on structural changes, heme degradation and aggregation of hemoglobin (Hb) was evaluated by UV-visible (Vis) spectroscopy, circular dichroism (CD) spectroscopy, fluorescence spectroscopy, transmission electron microscopy (TEM), and molecular modeling investigations. Also, the morphological changes and expression of Bax/Bcl-2 mRNA in human lymphocyte cell exposed to NiO NPs were assayed by DAPI staining and quantitative real-time PCR (qPCR), respectively. The UV-Vis study depicted that NiO NPs resulted in the displacement of aromatic residues and heme groups and production of the pro-aggregatory species. Intrinsic and Thioflavin T (ThT) fluorescence studies revealed that NiO NPs resulted in heme degradation and amorphous aggregation of Hb, respectively, which the latter result was also confirmed by TEM study. Moreover, far UV-CD study depicted that NiO NPs lead to substantial secondary structural changes of Hb. Furthermore, near UV-CD displayed that NiO NPs cause quaternary conformational changes of Hb as well as heme displacement. Molecular modelling study also approved that NiO NPs resulted in structural alterations of Hb and heme deformation. Moreover, morphological and genotoxicity assays revealed that the DNA fragmentation and expression ratio of Bax/Bcl-2 mRNA increased in lymphocyte cells treated with NiO NPs for 24?hr. In conclusion, this study indicates that NiO NPs may affect the biological media and their applications should be limited.Communicated by Ramaswamy H. Sarma 相似文献