首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Cytoskeletal alterations in the cytoplasm of chromatolytic neurons of the dorsal root ganglia were studied in chickens after transection of the sciatic nerves. These studies were carried out using cryofixation with a nitrogencooled propane jet. By this method, the morphological complexity of the cytoskeleton in normal perikarya and cell processes can be visualized. The cytoskeleton of the dorsal root ganglion cells (DRG) is composed of an intricate network of microtubules, neurofilaments and microfilaments. The membrane-bounded cell organelles, as well as the cell nucleus and the plasmalemma, are linked to the microtubules and neurofilaments by microfilaments (or crosslinkers). As a result of the transection of the axon, chromatolysis takes place, characterized by dislocation of cell organelles, eccentric position of the nucleus and dispersion of the parallel cisternae of the rough endoplasmic reticulum throughout the cytoplasm. This characteristic phenomenon coincides with a regression of the neurocytoskeletal network. The neurofilaments and microtubules become shorter, and the microfilaments are replaced by strands of globular or granular material. The temporary regression of the microfilaments leads to a dispersion of the cell organelles. During the remodelling of the cytoskeletal structures, proliferation of the neurofilaments in the regenerating neurons may occasionally be observed. These results show that the cytoskeletal structures are responsible not only for the preservation of cell shape, but also for the maintenance of the normal distributional pattern (location and mobility) of the intracellular components.  相似文献   

2.
Summary The asynaptic spinal neurons of the gymnotid teleost Sternarchus albifrons show several distinct characteristics of the retrograde reaction of the perikaryon (which corresponds to chromatolysis in mammals) following axotomy. Nuclei of affected cells are characteristically eccentric. Large bundles of neurofilaments, never seen in normal perikarya of these cells, become prominent following axotomy. There is a marked increase in the number and size of dense bodies in the affected perikarya. Large arrays of parallel rough endoplasmic reticulum, never seen in normal cells, are frequent in the axotomized neurons. These results demonstrate that disconnection from synaptic terminals is not a necessary condition for the retrograde reaction of the perikaryon following axotomy.  相似文献   

3.
Immunofluorescence staining with antibodies to tubulin, neurofilaments and glial filaments was used to study the effects of methylmercury on the differentiation of retinoic acid-induced embryonal carcinoma cells into neurons and astroglia and on the cytoskeleton of these neuroectodermal derivatives. Methylmercury did not prevent undifferentiated embryonal carcinoma cells from developing into neurons and glia. Treatment of committed embryonal carcinoma cells with methylmercury doses exceeding 1 M resulted in the formation of neurons with abnormal morphologies. In differentiated cultures, microtubules were the first cytoskeletal element to be affected. Their disassembly was time- and concentration-dependent. Microtubules in glial cells and in neuronal perikarya were more sensitive than those in neuronal processes. Neurofilaments and glial filaments appeared relatively insensitive to methylmercury treatment but showed reorganization after complete disassembly of the microtubules. The data demonstrate 1) the sensitivity of microtubules of both neurons and glia to methylmercury-induced depolymerization, and 2) the heterogeneous response of neuronalAbbreviations -MEM alpha minimal essential medium - EC embryonal carcinoma cells - FCS fetal calf serum - MAP microtubule-associated protein - MeHg methylmercury - RA retinoic acid  相似文献   

4.
The rat ganglion nodosum was used to study chromatolysis following axon section. After fixation by aldehyde perfusion, frozen sections were incubated for enzyme activities used as markers for cytoplasmic organelles as follows: acid phosphatase for lysosomes and GERL (a Golgi-related region of smooth endoplasmic reticulum from which lysosomes appear to develop) (31–33); inosine diphosphatase for endoplasmic reticulum and Golgi apparatus; thiamine pyrophosphatase for Golgi apparatus; acetycholinesterase for Nissl substance (endoplasmic reticulum); NADH-tetra-Nitro BT reductase for mitochondria. All but the mitochondrial enzyme were studied by electron microscopy as well as light microscopy. In chromatolytic perikarya there occur disruption of the rough endoplasmic reticulum in the center of the cell and segregation of the remainder to the cell periphery. Golgi apparatus, GERL, mitochondria and lysosomes accumulate in the central region of the cell. GERL is prominent in both normal and operated perikarya. Electron microscopic images suggest that its smooth endoplasmic reticulum produces a variety of lysosomes in several ways: (a) coated vesicles that separate from the reticulum; (b) dense bodies that arise from focal areas dilated with granular or membranous material; (c) "multivesicular bodies" in which vesicles and other material are sequestered; (d) autophagic vacuoles containing endoplasmic reticulum and ribosomes, presumably derived from the Nissl material, and mitochondria. The number of autophagic vacuoles increases following operation.  相似文献   

5.
The mechanisms for motor neuron degeneration and regeneration in adult spinal cord following axotomy and target deprivation are not fully understood. We used a unilateral sciatic nerve avulsion model in adult rats to test the hypothesis that retrograde degeneration of motor neurons resembles apoptosis. By 21 days postlesion, the number of large motor neurons in lumbar spinal cord was reduced by approximately 30%. The death of motor neurons was confirmed using the terminal transferase-mediated deoxyuridine triphosphate-biotin nick-end labeling method for detecting fragmentation of nuclear DNA. Motor neuron degeneration was characterized by aberrant accumulation of perikaryal phosphorylated neurofilaments. Structurally, motor neuron death was apoptosis. Apoptotic motor neurons undergo chromatolysis followed by progressive cytoplasmic and nuclear condensation with chromatin compaction into uniformly large round clumps. Prior to apoptosis, functionally active mitochondria accumulate within chromatolytic motor neurons, as determined by cytochrome c oxidase activity. These dying motor neurons sustain oxidative damage to proteins and nucleic acids within the first 7 days after injury during the progression of apoptosis, as identified by immunodetection of nitrotyrosine and hydroxyl-modified deoxyguanosine and guanosine. We conclude that the retrograde death of motor neurons in the adult spinal cord after sciatic nerve avulsion is apoptosis. Accumulation of active mitochondria within the perikaryon and oxidative damage to nucleic acids and proteins may contribute to the mechanisms for apoptosis of motor neurons in the adult spinal cord.  相似文献   

6.
The mechanisms for motor neuron degeneration and regeneration in adult spinal cord following axotomy and target deprivation are not fully understood. We used a unilateral sciatic nerve avulsion model in adult rats to test the hypothesis that retrograde degeneration of motor neurons resembles apoptosis. By 21 days postlesion, the number of large motor neurons in lumbar spinal cord was reduced by ∼30%. The death of motor neurons was confirmed using the terminal transferase‐mediated deoxyuridine triphosphate‐biotin nick‐end labeling method for detecting fragmentation of nuclear DNA. Motor neuron degeneration was characterized by aberrant accumulation of perikaryal phosphorylated neurofilaments. Structurally, motor neuron death was apoptosis. Apoptotic motor neurons undergo chromatolysis followed by progressive cytoplasmic and nuclear condensation with chromatin compaction into uniformly large round clumps. Prior to apoptosis, functionally active mitochondria accumulate within chromatolytic motor neurons, as determined by cytochrome c oxidase activity. These dying motor neurons sustain oxidative damage to proteins and nucleic acids within the first 7 days after injury during the progression of apoptosis, as identified by immunodetection of nitrotyrosine and hydroxyl‐modified deoxyguanosine and guanosine. We conclude that the retrograde death of motor neurons in the adult spinal cord after sciatic nerve avulsion is apoptosis. Accumulation of active mitochondria within the perikaryon and oxidative damage to nucleic acids and proteins may contribute to the mechanisms for apoptosis of motor neurons in the adult spinal cord. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 185–201, 1999  相似文献   

7.
A J S?reide 《Acta anatomica》1981,110(2):173-188
The retrograde nerve cell reaction was studied after evulsion, transection and crush lesion of the facial nerve in rats. Crush lesion caused barely discernible light and electron microscopic changes. The Nissl bodies became slightly smaller than normal and the arrangement of the granular endoplasmic reticulum (rER) somewhat more irregular. The crush lesions were followed by complete functional and morphologic recovery. After nerve evulsion, the cells showed severe chromatolysis, nuclear caps, nuclear eccentricity, and folding of the nuclear membrane. Ultrastructurally there was a dispersion of the rER and formation of laminated dense bodies. Lager, the rER was partly degranulated and some of the polyribosomes dissociated. These neurons ultimately disappeared. Transection of the nerve caused an intermediate axon reaction and a moderate loss of neurons. It is concluded that certain neurons may regenerate after axotomy in spite of minimal light and electron microscopic changes in the nerve cell bodies, and that the same neurons may show the typical axon reaction after more severe nerve injuries. Mechanisms which may be involved in the regulation of the retrograde nerve cell reaction after axotomy are briefly discussed.  相似文献   

8.
THE RESPONSE OF VENTRAL HORN NEURONS TO AXONAL TRANSECTION   总被引:7,自引:3,他引:4  
The morphological changes induced in the frog ventral horn neurons by axonal transection have been studied with the electron microscope. During the first 2 wk after axotomy the neuronal nucleus becomes more translucent and the nucleolus becomes enlarged and less compact. The cisternae of the granular endoplasmic reticulum vesiculate and ribosomes dissociate from membranes. Free ribosomes and polysomes are dispersed in the cytoplasmic matrix. Neurofilaments and neurotubules are increased in number. These structures appear to be important in the regeneration of the axon. It is proposed that neurotubules, neurofilaments, and axoplasmic matrix are synthesized by the free polyribosomes in the chromatolytic neuron. By the fourth postoperative week, the neurons show evidence of recovery. The cytoplasm is filled with profiles of granular endoplasmic reticulum and many intercisternal polysomes. The substances being manufactured by the newly formed granular endoplasmic reticulum are not clearly defined, but probably include elements essential to electrical and chemical conduction of impulses. The significance of these observations in respect to recent studies of axoplasmic flow is discussed.  相似文献   

9.
Tandrup  T. 《Brain Cell Biology》2002,31(1):73-78
To test the hypothesis that a somatofugal wave of atrophy moving distally in the axon of primary sensory neurons leads to loss of myelinated nerve fibers in acrylamide neuropathy, rats (N = 18) were intoxicated with an initial dose of 75 mg acrylamide per kg body weight followed by daily treatment with 30 mg/kg for three, six and 12 days. Ten age matched saline treated rats served as controls. Numbers and mean volumes of A- and B-cell perikarya of the L5 dorsal root ganglion, numbers of myelinated axons and the mean cross sectional myelinated axon area 3 and 18 mm from the ganglion in the dorsal root and in the sural nerve were estimated using stereological techniques. After three days no changes in the number or size of primary sensory perikarya or myelinated axons were observed. However, after six days 11% of the A-cell perikarya showed signs of chromatolysis (P < 0.001). After 12 days the rats showed signs of ataxia and 23% (P < 0.001) of A-cell perikarya were chromatolytic. There was a tendency for atrophy of the mean perikaryal volume of A-cells (2P = 0.059). The size-frequency distributions of axonal area of myelinated fibers in the dorsal root 3 mm from the ganglion were displaced to the left towards smaller sizes (25–50% quartile: 2P < 0.005 and 75–100% quartile: 2P < 0.05). In conclusion, the primary structural event in acute acrylamide intoxication is chromatolysis of A-cells of the dorsal root ganglion without the occurrence of somatofugal axonal atrophy.  相似文献   

10.
Summary The olfactory nerve of the European pike (Esox lucius) contains 5.1 × 106 axons with an average diameter of 0.20 ± 0,04 m and a length of 5.5 cm in 1 meter long pike. Each axon contains an average of 4 microtubules as well as neurofilaments, smooth endoplasmic reticulum and about 500 mitochondria per centimeter. The number of neurofilaments ranges from zero in 15% of the cross sections to over 10 in 6%. Neurofilaments generally occur in clusters located opposite to microtubule regions. Smooth ER can not be identified in 14% of the cross sections suggesting that this structure may not be continuous. Microtubules often display annular regions (halos) of low electron density ranging in size from 800 to 1300 Å. Halos from adjacent tubules usually merge into regional halos. The ratio of axoplasm to glial cytoplasm is 4.4:1, while the ratio of axonal plasma membrane to glial plasma membrane exceeds 7:1. A 4 cm nerve contains 1280 cm2 of axolemma. This nerve represents an extreme in high density axonal packing and is therefore exceptionally well suited for biochemical, biophysical and physiological investigations.  相似文献   

11.
Neurofilaments, part of the cytoskeletal network, and neuron specific enolase, a major enzyme in glycolysis, are both present in central and peripheral neurons. Glial fibrillary acidic protein and S-100, on the other hand, are soluble proteins which are found exclusively in the supportive cells of the nervous system, i.e. the glial cells. Examination was made, using immunocytochemistry, of all main areas of the gastrointestinal tract of three mammalian species, rat, pig and man. By applying serial tissue sectioning, it was possible to study the relative occurrences of the two neuronal markers in the same cell bodies and to examine the relationships of the neurons with the glial cells as revealed by the antibodies to glial fibrillary acidic protein and S-100. Both neurofilaments and neuron specific enolase were localised to an extensive system of enteric nerves, with the level of neuron specific enolase-immunoreactivity showing greater variability than that observed using antibodies to neurofilaments. Comparison of the occurrence of neuron specific enolase and neurofilament immunoreactivity in serially sectioned neuronal cell bodies revealed that a minor population stained only with antibodies to neurofilaments. The equivocal or absent neuron specific enolase-immunoreactivity in some perikarya may reflect variations in functional status within the nervous system. Glial fibrillary acidic protein- and S-100-immunoreactivities were confined to glial cells which, in this normal tissue, were always in close association with the neurons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.

Background

Microtubules, microfilaments, and neurofilaments are cytoskeletal elements that affect cell morphology, cellular processes, and mechanical structures in neural cells. The objective of the current study was to investigate the contribution of each type of cytoskeletal element to the mechanical properties of axons of dorsal root and sympathetic ganglia cells in chick embryos.

Results

Microtubules, microfilaments, and neurofilaments in axons were disrupted by nocodazole, cytochalasin D, and acrylamide, respectively, or a combination of the three. An atomic force microscope (AFM) was then used to compress the treated axons, and the resulting corresponding force-deformation information was analyzed to estimate the mechanical properties of axons that were partially or fully disrupted.

Conclusion

We have found that the mechanical stiffness was most reduced in microtubules-disrupted-axons, followed by neurofilaments-disrupted- and microfilaments-disrupted-axons. This suggests that microtubules contribute the most of the mechanical stiffness to axons.
  相似文献   

13.
The lateral vestibular nucleus consists of multipolar isodendritic neurons of various sizes The distal segments of some dendrites display broad expansions packed with slender mitochondria and glycogen particles. These distinctive formations are interpreted as being growing tips of dendrites, and the suggestion is advanced that they are manifestations of architectonic plasticity in the mature central nervous system. Unlike large neurons elsewhere, the giant cells (Deiters) contain small Nissl bodies interconnected in a dense mesh-work. The Nissl substance is characterized by randomly arranged cisterns of the endoplasmic reticulum and by a high proportion of free ribosomes. Whether attached or free, ribosomes usually cluster in groups of four to six, and larger polysomal arrays are rare. Free ribosomal clusters also occur in the axon hillock and the initial segment. The neuronal perikarya contain distinctive inclusions consisting of a ball of neurofilaments enveloped by a complex honeycombed membrane. The failure of these fibrillary inclusions to stain with silver suggests that the putative argyrophilia of neurofilaments may reside in an inconstant matrix surrounding them. Giant cells of Deiters are in intimate contact with two kinds of cellular elements—astroglial processes and synaptic terminals. Oligodendroglial cells are only rarely satellites of giant cells; in contrast, they are frequently satellites of small and medium-sized cells.  相似文献   

14.
A microplate-microtubule array was observed in Anabaena sp. (B-378). This structure consists of an arched plate, about 8 nm thick, and various microtubules, 12 nm in diameter and 50 nm long, arranged in rows. The microtubules project at right angles from one side of the plate into the cytoplasm or towards the plasma membrane. Up to twelve microplate-microtubule arrays were observed in a single section of a cell.Microfilaments, about 2.8 nm in diameter and of undetermined length, were observed in four isolates of Anabaena. The microfilaments were always found in bundles, which varied in size, up to 0.63 m across and 0.91 long.Microtubules, 10 nm in diameter and about 150 nm in length, were observed associated with one facet of polyhedral bodies in 8 out of 20 isolates of Anabaena. The microtubules occurred in groups of up to 20 or more, and were always oriented with the long axis parallel to a facet of a polyhedral body. In cross section, the microtubules had an electron transparent lumen 5 nm wide and a wall 2.5 nm thick.These structures are compared to previously deseribed microtubules and microfilaments.  相似文献   

15.
Summary The cytoplasm of granulosa cells in human primordial follicles from normal women shows a system of filaments and microtubules. Filaments about 70–150 Å in diameter and several m in length can be seen as bundles or irregularly distributed. Microtubules about 200 Å in diameter are predominantly oriented in paranuclear regions. The relationships between cytoplasmic filaments and microtubules in granulosa cells and those of Sertoli cells are briefly discussed.  相似文献   

16.
The fine structure of synapses in the central nervous system of lamprey (Petromyzon marinus) ammocoetes has been investigated. Both synapses within the neuropil and synaptic links between giant fibers (including Müller cells) and small postsynaptic units are described. The distribution of neurofilaments and microtubules in nerve profiles over a wide diameter range is described, and the possible role of these structures in intracellular transport is discussed. Electron micrographs indicate that small lucent "synaptic vesicles" occur sparsely throughout the axoplasm and in regular arrays in association with microtubules in the vicinity of synapses. Within a synaptic focus, immediately adjoining the presynaptic membrane, vesicles are randomly arranged and are not associated with microtubules. Neurofilaments are present, generally in large numbers, but these are not associated with vesicles or other particulates. The structural findings are considered in terms of current concepts of fast and slow transport in neurons and the mechanochemical control of intracellular movement of materials.  相似文献   

17.
Freehand, isolated neuronal perikarya from the hypoglossal nucleus of the rabbit have been examined with light-and electron-microscopy (transmission and scanning). The surface of the cell bodies was largely covered with spherical particles which were 0.5–2 µ in diameter. Transmission electron microscopy proved that the spherical particles were synaptic nerve terminals. Crush of the hypoglossal nerve which leads to chromatolysis and swelling of the neuronal cell bodies results in a conspicuous reduction in the number of terminals attached to the surface of hypoglossal neurons. This effect was observed both for isolated neurons and in tissue sections. The effect is considered in relation to earlier reported variations in the adherence of neuropil to isolated neuronal perikarya. The functional importance of nerve ending detachment in connection with nerve injury is discussed.  相似文献   

18.
Transgenic mice expressing mutant (P301L) human tau develop neurofibrillary tangles, amyotrophy and progressive motor disturbance. We present ultrastructural features of neuronal degeneration in this model that suggests involvement of both neurofibrillary and autophagic processes in neurodegeneration. Neurons undergoing neurofibrillary degeneration contain tau-immunoreactive, 15–20 nm-wide straight or wavy filaments with no periodic twists. Tau filaments were found in two types of affected neurons. One type resembled neurons with neurofibrillary tangles (NFT) that were filled with numerous filaments that displaced sparse cytoplasmic organelles to the periphery. Microtubules were almost completely absent. The nucleus remained centrally located, but showed lobulations due to deep infoldings. The other type resembled ballooned neurons seen in some human tauopathies. The nucleus was peripherally placed, but normal appearing. The cytoplasmic organelles were dispersed throughout the swollen perikarya, the Golgi complex was fragmented and duplicated, while mitochondria and other organelles appeared normal. Tau filaments similar to those in NFT were sparse and not tightly packed. Microtubules were also sparse. Many autophagic vacuoles were present in these cells. Heterogeneous appearing axonal swellings resembling spheroids in human tauopathies were present in gray and white matter. Unlike normal appearing axons, axonal spheroids were filled with tau-immunoreactive filaments and autophagic vacuoles, in addition to normal appearing neurofilaments and microtubules. These P301L transgenic mice exhibit many features common to human tauopathies, making them a valuable model to study the pathogenesis of these uncommon disorders.  相似文献   

19.
(1) Following acute spinal cord injury, progesterone modulates several molecules essential for motoneuron function, although the morphological substrates for these effects are unknown. (2) The present study analyzed morphological changes in motoneurons distal to the lesion site from rats with or without progesterone treatment. We employed electron microscopy to study changes in nucleus and cytoplasm and immunohistochemistry for the microtubule-associated protein 2 (MAP2) for changes in cytoskeleton. (3) After spinal cord injury, the nucleoplasm appeared more finely dispersed resulting in reduced electron opacity and the nucleus adopted an eccentric position. Changes of perikarya included dissolution of Nissl bodies and dissociation of polyribosomes (chromatolysis). After progesterone treatment for 3 days, the deafferented motoneurons now presented a clumped nucleoplasm, a better-preserved rough endoplasmic reticulum and absence of chromatolysis. Progesterone partially prevented development of nuclear eccentricity. Whereas 50% of injured motoneurons showed nuclear eccentricity, only 16% presented this phenotype after receiving progesterone. Additionally, injured rats showed reduced immunostaining for MAP2 in dendrites, pointing to cytoskeleton abnormalities, whereas progesterone treatment attenuated the injury-induced loss of MAP2. (4) Our data indicated that progesterone maintained in part neuronal ultrastructure, attenuated chromatolysis, and preclude the loss of MAP2, suggesting a protective effect during the early phases of spinal cord injury.  相似文献   

20.
M. Cresti  M. Murgia  C. H. Theunis 《Protoplasma》1990,154(2-3):151-156
Summary Microtubules tightly cross-linked into bundles are described in the sperm cells ofBrassica oleracea pollen tubes. The sperm cells are lobed and tailed and the microtubule bundles are often located in these parts of the cells. In the present paper we suggest that the cross-linked microtubule organization could determine an intertubular sliding, probably generating a motility system that propels the sperm cells through the tube.Abbreviations GC generative cell - Mfs microfilaments - Mts microtubules - SC sperm cell - VC vegetative cell - VN vegetative nucleus  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号