首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In developing rats aged from newborns to 1.5 months, regularities were studied of the heart rate fluctuations associated with periodic bursts of the endogenous somatomotor excitation characteristic of early stages of postnatal ontogenesis of immature born animals. It has been established that decelerations predominate on the background of the motor bursts for the first week of life, whereas accelerations, since the beginning of the 3rd week. The heart rhythm changes can precede or lag behind the beginning of the motor excitation, which allows judging about the existence of two mechanisms of the interaction: about the heart reaction to motor activity and about the central drivers acting simultaneously on the both systems. Experiments with chronic desympathization and block of -adrenoreceptors indicate a participation of the sympathetic nervous system in formation of the motor-cardiac interaction.  相似文献   

2.
Accelerations in fetal heart rate have been shown to be closely related to fetal body movements and are indicative of well-being in the human fetus. We have examined the association of accelerations and decelerations in heart rate with skeletal muscle activity in 8 fetal sheep between 125 and 145 days' gestation. Accelerations/decelerations were defined as transient increases/decreases in fetal heart rate of greater than or equal to 10 beats/min. lasting for 5 s or longer. For accelerations (n = 1180), the mean duration was 18.8 +/- 1.5 s (SEM) and the mean amplitude was 25.3 +/- 1.2 beats/min; for decelerations (n = 237), the mean duration was 17.4 +/- 1.6 s and the mean amplitude was 18.7 +/- 1.0 beats/min. Electromyograms were recorded from the nuchal muscles and antagonistic muscle groups of the fetal forelimb and hindlimb. Electromyogram activity occurred during 88.4 +/- 2.8% of accelerations and 60.6 +/- 7.7% of decelerations. There was a 36.6% reduction in the number of accelerations following fetal paralysis with gallamine, but no change in their amplitude or duration. It is concluded that accelerations in heart rate are highly associated with skeletal muscle activity in fetal sheep. The majority of these occur as a result of central neuronal output rather than as a consequence of fetal movement.  相似文献   

3.
Development of the cardiac, respiratory, and motor activities in rat fetuses with preserved placental circulation was studied at the 16th, 18th, and 20th gestation days. The presence of three main movement types has been found: complexes of generalized activity, local movements, and jerks. In development of respiratory function, there is observed a gradual transition from individual inspirations to series of breathing movements and then to formation of periodic breathing episodes. At the studied period, the heart rate has been found to increase. The existence of the slow-wave modulations of the heart rate with a period of 2040 s has been revealed. Analysis of interrelations between the respiratory and motor systems has shown that in the 16-day fetuses, each breathing movement is accompanied by extensor jerk. By the 20th days of embryonic development (E20), uncoupling of the respiratory and motor activities occurs. Comparison of the activity observed in the cardiac and somatomotor systems has shown that at E16, the cardiac rhythm fluctuations do not depend on the motor excitation jerks. In the 18-day fetuses, brief slowing down (decelerations) of the cardiac rhythm appeared during the motor activity jerks, whereas at E20, on the contrary, an increase of frequency (accelerations) of the cardiac rhythm occurred.  相似文献   

4.
Spontaneous and electrically-elicited motor activity was recorded by triple organ bath in rat segment-model preparation as display of excitation of local nerve networks and ascending or descending reflex pathways underlying contractile potency and functional coordination of colonic longitudinal and circular muscles. Spontaneous high-amplitude contractions, but not relaxations, appeared synchronously in both muscles. Electrical field stimulation applied to proximal or distal part of segments elicited both tetrodotoxin (0.1 microM)-sensitive local motor responses of the stimulated part and ascending or descending motor responses of the contralateral, nonstimulated part of the preparations. Contractions characterized the local response of longitudinal muscle. The circular muscle responded with relaxation followed by contraction. Synchronous ascending contractions and descending contraction of the longitudinal muscle and relaxation followed by contraction of the circular muscle were observed when the middle part of segments was stimulated, thus indicating that locally-induced nerve excitation propagated via intrinsic ascending or descending nerve pathways that could be synchronously coactivated by one and the same stimulus. The ascending motor responses were more pronounced and the motor responses of longitudinal muscle were expressed more than those of circular muscle suggesting an essential role of ascending reflex pathways and longitudinal muscle in the coordinated motor activity of colon.  相似文献   

5.
Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163–191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during treadmill-based clinical gait analysis.  相似文献   

6.

Objective

To compare a novel computerized analysis program with visual cardiotocography (CTG) interpretation results.

Methods

Sixty-two intrapartum CTG tracings with 20- to 30-minute sections were independently interpreted using a novel computerized analysis program, as well as the visual interpretations of eight obstetricians, to evaluate the baseline fetal heart rate (FHR), baseline FHR variability, number of accelerations, number/type of decelerations, uterine contraction (UC) frequency, and the National Institute of Child Health and Human Development (NICHD) 3-Tier FHR classification system.

Results

There was no significant difference in interobserver variation after adding the components of computerized analysis to results from the obstetricians'' visual interpretations, with excellent agreement for the baseline FHR (ICC 0.91), the number of accelerations (ICC 0.85), UC frequency (ICC 0.97), and NICHD category I (kappa statistic 0.91); good agreement for baseline variability (kappa statistic 0.68), the numbers of early decelerations (ICC 0.78) and late decelerations (ICC 0.67), category II (kappa statistic 0.78), and overall categories (kappa statistic 0.80); and moderate agreement for the number of variable decelerations (ICC 0.60), and category III (kappa statistic 0.50).

Conclusions

This computerized analysis program is not inferior to visual interpretation, may improve interobserver variations, and could play a vital role in prenatal telemedicine.  相似文献   

7.
Functional motor changes and morphological alterations have been associated with intestinal inflammation. The aim of our study was to evaluate functional alterations of intestinal reflexes and of the responses to CCK in the Trichinella spiralis model of intestinal inflammation. Rats were prepared with strain gauges and electrodes in the small intestine to evaluate spontaneous motor activity, the ascending contraction of the peristaltic reflex, and the motor responses to CCK-8 infusion. Infected animals showed increased motor activity at the duodenum and jejunum but not at the ileum. Ascending contraction was increased in both duodenum and ileum. Ascending excitation after N(omega)-nitro-L-arginine was still increased as well as the residual response after atropine. Response to CCK-8 during intestinal inflammation was changed in the jejunum, in which it turned from the inhibition shown in healthy animals to excitation. NADPH-diaphorase staining did not show any changes between distribution and density of positive neurons in either healthy or infected animals. In conclusion, intestinal inflammation induces functional changes in the motor activity that could explain the abnormal motor responses observed in inflammatory disorders.  相似文献   

8.
In chick (Gallus gallus domesticus) embryos, instantaneous heart rate begins to fluctuate with the appearance of rapid, transient decelerations at around the end of the second week of incubation. Previously, it was shown that instantaneous heart rate decelerations were eliminated by administration of atropine and concurrently heart rate baseline was elevated in late embryos. Because the previous study lacked statistical treatment and there has been recent controversy over the development of tonic vagal control of the heart, we reexamine the hypothesis that transient decelerations of instantaneous heart rate are mediated by vagus nerve and the vagal tone begins to appear at around the end of the second week of incubation. Atropine administration tests were conducted for sixty-seven 11- to 14-day-old and 18-day-old embryos in total. Heart rate decelerations appeared sporadically in three out of ten 12-day-old embryos, but the difference of mode heart rate before and after administration of atropine was not significant. Seven out of nine 13-day-old embryos and all nine 14-day-old embryos showed heart rate decelerations and the difference of mode heart rate before and after atropine administration was significant. In late (18-day-old) embryos, magnitude and frequency of instantaneous heart rate decelerations further increased with additional appearance of transient, irregular accelerations. Administration of varying doses of atropine completely eliminated the heart rate decelerations and elevated the heart rate baseline more markedly than in young embryos, indicating the maturation of vagal tone late in incubation.  相似文献   

9.
The instantaneous heart rate changes were examined in 12 forest workers during following tests: increasing (up to refusal) dynamic load on ergometer, rest in erect position, static load (about 75% of body weight) in erect position. The ECG signal, carrying information on heart rate, was amplified and processed by means of an especially designed heart rate analyzer. The dynamics of heart rate changes was evaluated through the analysis of differences of subsequent instantaneous heart rates and of distributions of heart rate accelerations and decelerations during the tests. Significantly different distributions of instantaneous heart rate changes as well as of accelerations and decelerations were observed for different loads.  相似文献   

10.
The phase that elapses from pollination to fertilization is re-examined giving special attention to pollen pistil interaction in compatible matings. Pollination induces an activation of the pistil. A number of changes take place in the different tissues of this organ that appear to support male gametophyte development and to assist fertilization. Thus pollination induces stigma secretion, the release of starch from the transmitting tissue and prolongs embryo sac viability. It appears that even those pollen grains that do not achieve fertilization have a synergistic role supporting others to do so.The pistil also has an effect on pollen tube growth. Pollen tube growth along the pistil is not continuous, accelerations and decelerations take place depending on the different tissues they traverse. The fact that pollen tube growth is heterotrophic, at the expenses of the pistil reserves, and that these reserves are not continuously produced confers the pistil with a role controlling pollen tube growth kinetics.  相似文献   

11.
DG-erotoxine (SPOFA)--200 mg/kh b. w. has no effect to the motor activity in scates. The dose of 500 mkg/kh produces 20-30 min. after injection the excitation of contraction followed by the inhibition. In frogs the dose of 25 mkg/kg produces the excitation of stomach contractions. The dose of 100 mkg/kg initially stimulates motor activity, later on--inhibits it. In the tortoise the dose of 25 mkg/kg increases the contraction of the stomach the dose of 2000 mkg/kg inhibits it.  相似文献   

12.
Electronic stun devices (ESD) often used in law enforcement, military action or self defense can induce total body uncoordinated muscular activity, also known as electromuscular incapacitation (EMI). During EMI the subject is unable to perform purposeful or coordinated movements. The mechanism of EMI induction has not been reported, but has been generally thought to be direct muscle and nerve excitation from the fields generated by ESDs. To determine the neuromuscular mechanisms linking ESD to induction of EMI, we investigated EMI responses using an anesthetized pig model. We found that EMI responses to ESD application can best be simulated by simultaneous stimulation of motor and sensory peripheral nerves. We also found that application of local anesthetics limited the response of ESD to local muscle stimulation and abolished the total body EMI response. Stimulation of the pure sensory peripheral nerves or nerves that are primarily motor nerves induced muscle responses that are consistent with well defined spinal reflexes. These findings suggest that the mechanism of ESD‐induced EMI is mediated by excitation of multiple simultaneous spinal reflexes. Although direct motor‐neuron stimulation in the region of ESD contact may significantly add to motor reactions from ESD stimulation, multiple spinal reflexes appear to be a major, and probably the dominant mechanism in observed motor response. Bioelectromagnetics 30:411–421, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The article considers morpho-functional organization of cilia—the infusorian locomotion organs—and shows a great complexity of motor behavior of these unicellulars. The problem of control of locomotor activity of infusorian as the single organism is discussed, and the conclusion is made that the system of control of movements is to be multilevel and to include receptor, afferent, central, efferent, and effector links. The role of central integrator and coordinator of motor behavior can be played by the cell nucleus (macronucleus) closely connected with periphery by cytoskeleton dynamic elements. The problem of fight with infusoria parasitizing in the human and animal bodies by impairing motor activity of these unicellulars is also discussed.  相似文献   

14.
When isolated muscle synchronous contraction is evoked during in vitro twitches, mechanical vibrations at the surface of the muscle reflect resonant behavior. In contrast, voluntary contraction corresponds to the asynchronous contraction of recruited motor units, therefore, this kind of excitation could lead to different muscle vibrational behavior. We have studied human biceps brachii muscle during voluntary contraction in 10 healthy subjects. Low and high levels of voluntary contraction were explored with simultaneous recording of surface vibration by two sensors located longitudinally or perpendicular to the muscle's main axis. Cross-correlation and coherence functions were computed. Coherence functions revealed a common vibration frequency band between 17 and 28 Hz. Cross correlation functions revealed in-phase vibration for longitudinal sensors and opposite phase vibration for perpendicular sensors thus confirming a lateral bending movement. This behavior suggests that the acoustic myogram is the response of the muscle as a global resonant structure to the local fluctuations of pressure.  相似文献   

15.
Microinjections of kainic acid and ferrous sulfate into basomedial nuclei of both amygdalae resulted in the formation of the generator of pathologically enhanced excitation (GPEE), as evidenced by the epileptical activity (EpA) registered in both nuclei. EpA of different intensity and pattern could be retained for more than three weeks. Hyperactive basomedial nuclei played the role of a primary pathological determinant which caused the complex of emotional and behavioural disorders. Continuous motor depression at the early stages alternated pathologically enhanced activity at the later stages. A number of signs could be considered as the evidence of the affective disorders (motivation suppression, enhanced irritation, anxious excitation). Stereotype behaviour, immobility, rigidity, different types of vegetative disorders (ptosis, constipation, piloerection, loss of weight, respiratory arrhythmia, dystrophic symptoms) were observed in most animals. The emotional, behavioural and vegetative disorders described are compared to the manifestations of the depressive syndrome.  相似文献   

16.
Local stimulation in the zone of motor representation of the cat hind limb in the postcruciate cortex (area 4) modulates afferent activity of flexor spindles of the foot. An initial pause, connected with contraction of extrafusal fibers, is observed in this activity. After the muscle has returned to its original length, a sharp rise of discharge frequency develops followed by a return to its initial level. Similar phases, but less marked, are observed in secondary afferents. Stimulation of contralateral and ipsilateral regions of the medial precruciate cortex (area 6) causes selective, intensive, and prolonged facilitation of discharge of type Ia units followed by an after-effect, without involving extrafusal muscle fibers. Since influences of the premotor supplementary cortex on lumbar gamma motoneurons are relatively independent of influences coupled with activation of the alpha system on muscle afferents from the motor cortex, a specific role of area 6 in the regulation of segmental excitability of the gamma system can be postulated.  相似文献   

17.
Activation of myosin II by myosin light chain kinase (MLCK) produces the force for many cellular processes including muscle contraction, mitosis, migration, and other cellular shape changes. The results of this study show that inhibition or potentiation of myosin II activation via over-expression of a dominant negative or wild type MLCK can delay or accelerate tumor necrosis factor-alpha (TNF)-induced apoptotic cell death in cells. Changes in the activation of caspase-8 that parallel changes in regulatory light chain phosphorylation levels reveal that myosin II motor activities regulate TNF receptor-1 (TNFR-1) signaling at an early step in the TNF death signaling pathway. Treatment of cells with either ionomycin or endotoxin (lipopolysaccharide) leads to activation of myosin II and increased translocation of TNFR-1 to the plasma membrane independent of TNF signaling. The results of these studies establish a new role for myosin II motor activity in regulating TNFR-1-mediated apoptosis through the translocation of TNFR-1 to or within the plasma membrane.  相似文献   

18.
Insight into the magnitude of muscle forces is important in biomechanics research, for example because muscle forces are the main determinants of joint loading. Unfortunately muscle forces cannot be calculated directly and can only be measured using invasive procedures. Therefore, estimates of muscle force based on surface EMG measurements are frequently used. This review discusses the problems associated with surface EMG in muscle force estimation and the solutions that novel methodological developments provide to this problem. First, some basic aspects of muscle activity and EMG are reviewed and related to EMG amplitude estimation. The main methodological issues in EMG amplitude estimation are precision and representativeness. Lack of precision arises directly from the stochastic nature of the EMG signal as the summation of a series of randomly occurring polyphasic motor unit potentials and the resulting random constructive and destructive (phase cancellation) superimpositions. Representativeness is an issue due the structural and functional heterogeneity of muscles. Novel methods, i.e. multi-channel monopolar EMG and high-pass filtering or whitening of conventional bipolar EMG allow substantially less variable estimates of the EMG amplitude and yield better estimates of muscle force by (1) reducing effects of phase cancellation, and (2) adequate representation of the heterogeneous activity of motor units within a muscle. With such methods, highly accurate predictions of force, even of the minute force fluctuations that occur during an isometric and isotonic contraction have been achieved. For dynamic contractions, EMG-based force estimates are confounded by the effects of muscle length and contraction velocity on force producing capacity. These contractions require EMG amplitude estimates to be combined with modeling of muscle contraction dynamics to achieve valid force predictions.  相似文献   

19.
Changes in the heart basic rhythm, its rhythmical variations on periodograms, and level of spontaneous motor activity were studied on offspring of white rats from newborn to 3-week age at transition from the state of active wakefulness to narcosis as well as under conditions of blockade of M-cholinoreceptors with atropine. It is shown that the endogenous rhythmical activity can be regulated not only by a change in frequency of basic rhythms, but also by action on all parameters and properties of their rhythmical variations and secondary rhythms. The changes in power of the heart secondary rhythms exceed considerably the frequency oscillations of basic rhythms during blockade of cholinergic innervation or a change in the motor activity level that affects both the basic rhythm circulation and respiration and their variations—secondary rhythms. The atropine blockade of M-cholinoreceptors at the studied ages changes the heart contraction rhythm within the limits of 10% of bradycardia in newborns to tachycardia in the 3-week old animals. At the same time, power of the cardiac rhythm secondary oscillations changes several times. These data indicate that the cholinergic mechanisms play the key role in formation of the secondary rhythms and their correlation with motor activity.  相似文献   

20.
Conrad M 《Bio Systems》2001,60(1-3):23-38
Issues addressed in H.H. Pattee's origin of life laboratory in the 1960s and their connection to the physics–evolution–language problematic are indicated. The problem of quantum measurement played a central role. The problem is herein examined in the light of the fluctuon model; in particular, as the model applies to gravity. The main conclusion is that measurement and motion are a unitary process. All accelerations are accompanied by a cycle involving the annihilation and creation of superpositions. Gravitational collapse is also a cyclic process in the fluctuon model. By a suitable transformation, it can be seen that interactions underlying superpositional collapse are the same as those operative in gravitational collapse. Implications for the origin of cellular life and the development of symbolic systems are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号