首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The iron-regulated aerobactin operon, about 8 kilobase pairs in size, of the Escherichia coli plasmid ColV-K30 was shown by deletion and subcloning analyses to consist of at least five genes for synthesis (iuc, iron uptake chelate) and transport (iut, iron uptake transport) of the siderophore. The gene order iucABCD iutA was established. The genes were mapped within restriction nuclease fragments of a cloned 16.3-kilobase-pair HindIII fragment. Stepwise deletion and subsequent minicell analysis of the resulting plasmids allowed assignment of four of the five genes to polypeptides of molecular masses 63,000, 33,000 53,000, and 74,000 daltons, respectively. The 74-kilodalton protein, the product of gene iutA, is the outer membrane receptor for ferric aerobactin, whereas the remaining three proteins are involved in biosynthesis of aerobactin. The 33-kilodalton protein, the product of gene iucB, was identified as N epsilon-hydroxylysine:acetyl coenzyme A N epsilon-transacetylase (acetylase) by comparison of enzyme activity in extracts from various deletion mutants. The 53-kilodalton protein, the product of gene iucD, is required for oxygenation of lysine. The 63-kilodalton protein, the product of gene iucA, is assigned to the first step of the aerobactin synthetase reaction. The product of gene iucC, so far unidentified, performs the second and final step in this reaction. This is based on the chemical characterization of two precursor hydroxamic acids (N epsilon-acetyl-N epsilon-hydroxylysine and N alpha-citryl-N epsilon-acetyl-N epsilon-hydroxylysine) isolated from a strain carrying a 0.3-kilobase-pair deletion in the iucC gene. The results support the existence of a biosynthetic pathway in which aerobactin arises by oxygenation of lysine, acetylation of the N epsilon-hydroxy function, and condensation of 2 mol of the resulting aminohydroxamic acid with citric acid.  相似文献   

2.
N alpha-Acetyltransferase, which catalyzes the transfer of an acetyl group from acetyl coenzyme A to the alpha-NH2 group of proteins and peptides, was isolated from Saccharomyces cerevisiae and demonstrated by protein sequence analysis to be NH2-terminally blocked. The enzyme was purified 4,600-fold to apparent homogeneity by successive purification steps using DEAE-Sepharose, hydroxylapatite, DE52 cellulose, and Affi-Gel blue. The Mr of the native enzyme was estimated to be 180,000 +/- 10,000 by gel filtration chromatography, and the Mr of each subunit was estimated to be 95,000 +/- 2,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme has a pH optimum near 9.0, and its pI is 4.3 as determined by chromatofocusing on Mono-P. The enzyme catalyzed the transfer of an acetyl group to various synthetic peptides, including human adrenocorticotropic hormone (ACTH) (1-24) and its [Phe2] analogue, yeast alcohol dehydrogenase I (1-24), yeast alcohol dehydrogenase II (1-24), and human superoxide dismutase (1-24). These peptides contain either Ser or Ala as NH2-terminal residues which together with Met are the most commonly acetylated NH2-terminal residues (Persson, B., Flinta, C., von Heijne, G., and Jornvall, H. (1985) Eur. J. Biochem. 152, 523-527). Yeast enolase, containing a free NH2-terminal Ala residue, is known not to be N alpha-acetylated in vivo (Chin, C. C. Q., Brewer, J. M., and Wold, F. (1981) J. Biol. Chem. 256, 1377-1384), and enolase (1-24), a synthetic peptide mimicking the protein's NH2 terminus, was not acetylated in vitro by yeast acetyltransferase. The enzyme did not catalyze the N alpha-acetylation of other synthetic peptides including ACTH(11-24), ACTH(7-38), ACTH(18-39), human beta-endorphin, yeast superoxide dismutase (1-24). Each of these peptides has an NH2-terminal residue which is rarely acetylated in proteins (Lys, Phe, Arg, Tyr, Val, respectively). Among a series of divalent cations, Cu2+ and Zn2+ were demonstrated to be the most potent inhibitors. The enzyme was inactivated by chemical modification with diethyl pyrocarbonate and N-bromosuccinimide.  相似文献   

3.
The interaction of stearoyl-(1,N6)-etheno coenzyme A (stearoyl-epsilon-CoA) with acetyl coenzyme A carboxylase was investigated by using fluorescence spectroscopy. The fluorescence emission of stearoyl-epsilon-CoA was partially quenched by acetyl coenzyme A carboxylase. Analysis of the data for dissociation constant (KD) and the stoichiometry of the interaction (n) gave values of 5.06 nM and 1.2, respectively, at pH 7.6 in 50 mM Tris-HCl and 25 degrees C. The KD value is comparable to the inhibition constant (Ki) obtained previously by others for the inhibition of rat liver acetyl coenzyme A carboxylase by long chain fatty acyl-CoAs. Citrate (which is known to polymerize and thus activate carboxylase) caused a partial quenching of the protein fluorescence of carboxylase, presumably due to polymerization of the enzyme. The quenching of the stearoyl-epsilon-CoA fluorescence caused by carboxylase as well as the inhibition of carboxylase activity by stearoyl-epsilon-CoA was reversed by citrate, but only in the presence of 6-O-methylglucose polysaccharide which forms a stable complex with fatty acyl-CoA. This shows that the stearoyl-epsilon-CoA bound to the enzyme is displaced by citrate only in the presence of an acceptor of fatty acyl-CoA. These results support the reciprocal relationship of citrate and fatty acyl-CoA in the regulation of acetyl coenzyme A carboxylase.  相似文献   

4.
The ability of acetyl coenzyme A synthesizing carbon monoxide dehydrogenase isolated from Clostridium thermoaceticum to catalyze the exchange of [3'-32P]coenzyme A with acetyl coenzyme A is studied. This exchange is found to have a rate exceeding that of the acetyl coenzyme A carbonyl exchange also catalyzed by CO dehydrogenase ([1-14C]acetyl coenzyme A + CO in equilibrium acetyl coenzyme A + 14CO). These two exchanges are diagnostic of the ability of CO dehydrogenase to synthesize acetyl coenzyme A from a methyl group, coenzyme A, and carbon monoxide. The kinetic parameters for the coenzyme A exchange have been determined: Km(acetyl coenzyme A) = 1500 microM, Km(coenzyme A) = 50 microM, and Vmax = 2.5 mumol min-1 mg-1. Propionyl coenzyme A is shown to be a substrate (Km approximately 5 mM) for the coenzyme A exchange, with a rate 1/15 that of acetyl coenzyme A, but is not a substrate for the carbonyl exchange. CO dehydrogenase capable of catalyzing both these two exchanges, and the oxidation of CO to CO2, is isolated as a complex of molecular weight 410,000 consisting of three proteins in an alpha 2 beta 2 gamma 2 stoichiometry. The proposed gamma subunit, not previously reported as part of CO dehydrogenase, copurifies with the enzyme and has the same molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as the disulfide reductase previously separated from CO dehydrogenase in a final chromatographic step.  相似文献   

5.
3-Hydroxy-3-methylglutaryl coenzyme A reductase has been purified from rat liver microsomes with a recovery of approx. 25%. The enzyme was homogeneous on gel electrophoresis and enzyme activity comigrated with the single protein band. The molecular weight of the reductase determined by gel filtration on Sephadex G-200 was 200,000. SDS-polyacrylamide gel electrophoresis gave a subunit molecular weight of 52,000 +/- 2000, suggesting that the enzyme was a tetramer. The specific activities of the purified enzyme obtained from rats fed diets containing 0% or 5% cholestyramine were 11,303 and 19,584 nmol NADPH oxidized/min per mg protein, respectively. The reductase showed unique binding properties to Cibacron Blue Sepharose; the enzyme was bound to the Cibacron Blue via the binding sites for both substrates, NADPH and (S)-3-hydroxy-3-methylglutaryl coenzyme A. Antibodies prepared against purified reductase inactivated 100% of the soluble and at least 91% of the microsomal enzyme activity. Immunotitrations of solubilized enzyme obtained from normal and cholestyramine-fed rats indicated that cholestyramine feeding both increased the amount of enzyme protein and resulted in enzyme activation. Administration of increasing amounts of mevalonolactone to rats decreased the equivalence point obtained from immunotitration studies with solubilized enzyme. These data indicate that the antibody cross-reacts with the inactive enzyme formed after mevalonolactone treatment.  相似文献   

6.
Hen oviduct N alpha-acetyltransferase is a ribonucleoprotein having 7 S RNA   总被引:1,自引:0,他引:1  
Hen oviduct N alpha-acetyltransferase was clarified to have a nucleic acid as an existing constituent by the following three results: (i) an ultraviolet absorption spectrum of the purified N alpha-acetyltransferase free of S-acetyl coenzyme A (Ac-CoA) had an absorption maximum at 260 nm. (ii) A nucleic acid band stained with ethidium bromide was detected on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. (iii) An ethidium bromide band co-migrated with a fluorescent band of the protein treated with N-(7-dimethylamino-4-methylcoumarinyl)maleimide, a reagent specific for thiol groups, on polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate. N alpha-Acetyltransferase lost its activity partially or completely by digestion with bovine pancreatic RNase A, Staphylococcus aureus nuclease, or proteinase K, showing that both the nucleic acid and the protein subunit were necessary for the enzyme activity. The nucleic acid component was identified as an RNA but not a DNA because the RNase T2 digest of the nucleic acid was composed of four 3'-ribomononucleotides and completely separated from 3'- and 5'-deoxyribomononucleotides on TLC. The chain length of the nucleic acid of 260 nucleotides estimated by formamide-polyacrylamide gel electrophoresis was calculated to be about 83,000 of the molecular weight. The contents of RNA (35.0%) and protein (65.0%) in N alpha-acetyltransferase determined on weight basis corresponded reasonably well to the contents of RNA (34.4%) and protein (65.6%) calculated based on the assumption that N alpha-acetyltransferase consisted of one molecule of 7 S RNA (Mr 83,000) and two identical Mr 79,000 protein subunits. The total molecular weight (241,000) of the holoenzyme calculated based on the above result was identical to the molecular weight (240,000) of N alpha-acetyltransferase estimated by Sepharose 6B gel filtration.  相似文献   

7.
Quaternary structure and composition of squash NADH:nitrate reductase   总被引:6,自引:0,他引:6  
NADH:nitrate reductase (EC 1.6.6.1) was isolated from squash cotyledons (Cucurbita maxima L.) by a combination of Blue Sepharose and zinc-chelate affinity chromatographies followed by gel filtration on Bio-Gel A-1.5m. These preparations gave a single protein staining band (Mr = 115,000) on sodium dodecyl sulfate gel electrophoresis, indicating that the enzyme is homogeneous. The native Mr of nitrate reductase was found to be 230,000, with a minor form of Mr = 420,000 also occurring. These results indicate that the native nitrate reductase is a homodimer of Mr = 115,000 subunits. Acidic amino acids predominate over basic amino acids, as shown both by the amino acid composition of the enzyme and an isoelectric point for nitrate reductase of 5.7. The homogeneous nitrate reductase had a UV/visible spectrum typical of a b-type cytochrome. The enzyme was found to contain one each of flavin (as FAD), heme iron, molybdenum, and Mo-pterin/Mr = 115,000 subunit. A model is proposed for squash nitrate reductase in which two Mr = 115,000 subunits are joined to made the native enzyme. Each subunit contains 1 eq of FAD, cytochrome b, and molybdenum/Mo-pterin.  相似文献   

8.
N5-(L-1-Carboxyethyl)-L-ornithine:NADP+ oxidoreductase (EC 1.5.1.-) from Streptococcus lactis K1 has been purified 8,000-fold to homogeneity. The NADPH-dependent enzyme mediates the reductive condensation between pyruvic acid and the delta- or epsilon-amino groups of L-ornithine and L-lysine to form N5-(L-1-carboxyethyl)-L-ornithine and N6-(L-1-carboxyethyl)-L-lysine, respectively. The five-step purification procedure involves ion-exchange (DE52 and phosphocellulose P-11), gel filtration (Ultrogel AcA 44), and affinity chromatography (2',5'-ADP-Sepharose 4B). Approximately 100-200 micrograms of purified enzyme of specific activity 40 units/mg were obtained from 60 g of cells, wet weight. Anionic polyacrylamide gel electrophoresis revealed a single enzymatically active protein band, whereas three species (pI 4.8-5.1) were detected by analytical electrofocusing. The purified enzyme is active over a broad pH range of 6.5-9.0 and is stable to heating at 50 degrees C for 10 min. Substrate Km values were determined to be: NADPH, 6.6 microM; pyruvate, 150 microM; ornithine, 3.3 mM; and lysine, 18.2 mM. The oxidoreductase has a relative molecular mass (Mr = 150,000) as estimated by high pressure liquid chromatography exclusion chromatography and by polyacrylamide gradient gel electrophoresis. Conventional gel filtration indicated an Mr = 78,000, and a single protein band of Mr = 38,000 was revealed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is composed of identical subunits of Mr = 38,000, which may associate to yield both dimeric and tetrameric forms. Polyclonal antibody to the purified protein inhibited enzyme activity. The amino acid composition of the enzyme is reported, and the sequence of the first 37 amino acids from the NH2 terminus has been determined by stepwise Edman degradation.  相似文献   

9.
Incubation of purified prostaglandin endoperoxide synthetase from sheep vesicular glands with aspirin results in a covalent binding of the acetyl group of acetylsalicylic acid to the protein. During this acetylation, the cyclooxygenase activity is lost, but not the peroxidase activity. The reaction is completed when almost one acetyl group is bound per polypeptide chain (Mr = 68 000). After proteolysis of [3H]acetyl-protein with pronase, radioactive N-acetylserine was obtained. Originally, however, the hydroxyl group of an internal serine residue in the chain is acetylated. The formation of N-acetylserine can be explained by a rapid O leads to N acetyl shift as soon as the NH2 group of serine is liberated. A radioactive dipeptide was isolated from a thermolysin digest of the [3H]acetyl-enzyme containing phenylalanine and serine, phenylalanine being its N-terminal amino acid. Automatic Edman degradation of native and acetylated enzyme showed that only one polypeptide sequence was present: Ala-Asp-Pro-Gly-Ala-Pro-Ala-Pro-Val-Asn-Pro-X-X-Tyr-. The N-terminal sequence has an apolar character.  相似文献   

10.
A new enzyme, Acetyl Coenzyme A: deacetylvindoline 0-acetyl transferase (EC 2.3.1. -) which catalyses the synthesis of vindoline from acetyl coenzyme A and deacetylvindoline was isolated from the soluble protein extract of Catharanthus roseus leaves and purified approximately 365-fold. The enzyme had an apparent pI of 4.6 upon chromatofocusing, an apparent molecular weight of 45,000 daltons and a pH optimum between 8.0 to 9.0. Dithiothreitol was essential to maintain enzyme activity.Substrate saturation studies of this enzyme resulted in Michaelis Menton kinetics giving Km values of 5.4 and 0.7µM respectively for acetyl coenzyme A and deacetylvindoline. Studies of the forward reaction demonstrated an absolute requirement for acetyl coenzyme A and deacetylvindoline derivatives containing a double bond at positions 6, 7, whereas the reverse reaction occurred only in the presence of free coenzyme A and vindoline derivatives containing the same double bond. The forward reaction was subject to product inhibition by coenzyme A with an apparent Ki of 8 µM, but was not inhibited by up to 2 mM vindoline. The rate of reaction could therefore be regulated by the level of free coenzyme A in the cell, unaffected by the accumulation of indole alkaloid product.It was suggested that this enzyme catalyses a late step in the biosynthesis of vindoline.  相似文献   

11.
S Nilekani  C SivaRaman 《Biochemistry》1983,22(20):4657-4663
Citrate lyase (EC 4.1.3.6) has been purified from Escherichia coli and the homogeneity of the preparation established from the three-component subunits obtained on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of 120 mumol min-1 mg-1 and requires optimally 10 mM Mg2+ and a pH of 8.0 for the cleavage reaction. The native enzyme is polydispersed in the ultracentrifuge and in polyacrylamide gel electrophoresis. The enzyme complex is composed of three different polypeptide chains of 85 000, 54 000, 32 000 daltons. An estimate of subunit stoichiometry indicates that 1 mol of the largest polypeptide chain is associated with 6 mol each of the smaller ones. The polypeptide subunits have been isolated in pure state and their biological functions characterize. The 54 000-dalton subunit functions as the acyltransferase alpha subunit catalyzing the formation of citryl coenzyme A from citrate in the presence of acetyl coenzyme A and ethylenediaminetetraacetic acid. The 32 000-dalton subunit functions as the acyllyase beta subunit catalyzing the cleavage of (3S)-citryl coenzyme A to oxal-acetate and acetyl coenzyme A. The 85 000-dalton subunit, which carries exclusively the prosthetic group components, functions as the acyl-carrier protein gamma subunit in the cleavage of citrate in the presence of mg2+ and the alpha and beta subunits. The presence of a large ACP subunit and the unusual stoichiometry of the different subunits distinguish the complex from other citrate lyases. A ligase which acetylates the deacetyl[citrate lyase] in the presence of acetate and ATP has ben shown to be present in the organism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Saccharopine dehydrogenase (N6-(glutar-2-yl)-L-ly-sine:NAD oxidoreductase (L-lysine-forming)) from baker's yeast was purified to homogenicity. The overall purification was about 1,200-fold over the crude extract with a yield of about 24%. The purified enzyme had a sedimentation coefficient (S20,w) of 3.0 S. The molecular weight determinations by sedimentation equilibrium, Sephadex G-100 gel filtration, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a value of about 39,000 and, therefore, saccharopine dehydrogenase is a single polypeptide chain enzyme. A Stokes radius of 27 A and a diffusion constant of 7.9 X 10(-7) cm2 s-1 were obtained from Sephadex gel filtration chromatography. The enzyme had a high isoelectric pH of 10.1. The NH2-terminal sequence was Ala-Ala----. The enzyme possessed 3 cysteine residues/molecule; no disulfide bond was present. Incubation of saccharopine dehydrogenase with p-chloromercuribenzoate or iodoacetate resulted in complete loss of enzyme activity. Whereas the coenzyme and substrates were ineffective in protecting from inactivation by p-chloromercuribenzoate, iodoacetate inhibition was protected by excess coenzyme.  相似文献   

13.
The reduction of N5,N10-methylenetrahydromethanopterin (CH2 = H4MPT) to N5-methyltetrahydromethanopterin (CH3-H4MPT) is an intermediate step in methanogenesis from CO2 and H2. The reaction is catalyzed by CH2 = H4MPT reductase. The enzyme from Methanobacterium thermoautotrophicum (strain Marburg) was found to be specific for reduced coenzyme F420 as electron donor; neither NADH or NADPH nor reduced viologen dyes could substitute for the reduced 5-deazaflavin. The reductase was purified over 100-fold to apparent homogeneity. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis revealed only one protein band at the 36-kDa position. The apparent molecular mass of the native enzyme was determined by gel filtration to be in the order of 150 kDa. The purified enzyme was colourless. It did not contain flavin or iron. The ultraviolet visible spectrum was almost identical to that of albumin, suggesting the absence of a chromophoric prosthetic group. Reciprocal plots of the enzyme activity versus the substrate concentration at different constant concentrations of the second substrate yielded straight lines intersecting at one point on the abscissa to the left of the vertical axis. This intersecting pattern is characteristic of a ternary complex catalytic mechanism. The Km for CH2 = H4MPT and for the reduced coenzyme F420 were determined to be 0.3 mM and 3 microM, respectively. Vmax was 6000 mumol.min-1.mg protein-1 (kcat = 3600 s-1). The CH2 = H4MPT reductase was stable in the presence of air; at 4 C less than 10% activity was lost within 24 h.  相似文献   

14.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5'AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of the 60 micrograms of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

15.
The purification of Neurospora crassa myo-inositol-1-phosphate synthase (EC 5.5.1.4) was studied by affinity chromatography using the substrate (glucose-6-phosphate), the inhibitor (pyrophosphate), the coenzyme (NAD+) and the coenzyme analogues (5′AMP and Cibacron Blue F3G-A) of the enzyme as adsorbents attached to agarose gel. Myo-inositol-1-phosphate synthase could be separated completely from the contaminating substance, glucose-6-phosphate dehydrogenase (EC 1.1.1.49), on Blue Sepharose CL-6B and on pyrophosphate-Sepharose. The purified enzyme had a specific activity of 16 400 U/mg. The sodium dodecyl sulfate/polyacrylamide gel electrophoresis of 60 μq of this purified enzyme gave a homogenous band. The enzyme was found to be composed of four identical subunits having a molecular weight of 65 000.  相似文献   

16.
The gene encoding the serine cycle hydroxypyruvate reductase of Methylobacterium extorquens AM1 was isolated by using a synthetic oligonucleotide with a sequence based on a known N-terminal amino acid sequence. The cloned gene was inactivated by insertion of a kanamycin resistance gene, and recombination of this insertion derivative with the wild-type gene produced a serine cycle hydroxypyruvate reductase null mutant. This mutant had lost its ability to grow on C-1 compounds but retained the ability to grow on C-2 compounds, showing that the hydroxypyruvate reductase operating in the serine cycle is not involved in the conversion of acetyl coenzyme A to glycine as previously proposed. A second hydroxypyruvate-reducing enzyme with a low level of activity was found in M. extorquens AM1; this enzyme was able to interconvert glyoxylate and glycollate. The gene encoding hydroxypyruvate reductase was shown to be located about 3 kb upstream of two other serine cycles genes encoding phosphoenolpyruvate carboxylase and malyl coenzyme A lyase.  相似文献   

17.
Purification and molecular characterization of bovine pregastric lipase   总被引:1,自引:0,他引:1  
A pregastric lipase was purified from calf pharyngeal tissues. The purification procedure was based on chromatographies on octyl-Sepharose and lentil-lectin-Sepharose followed by gel filtration. The final preparation, with an overall recovery of 26% of activity, gave a single protein band on dodecyl sulfate/polyacrylamide gel electrophoresis with a Mr of 55000. The Mr on gel filtration was 44-48000. The discrepancy may be due to the fact that pregastric lipase is a glycoprotein containing approximately 10% (w/w) of carbohydrate. The pI was around 7.0 and the enzyme protein is characterized by a high content of branched, aliphatic amino acid residues. The NH2-terminal amino acid sequence is: H2N-Phe-Leu/(Ile)-Gly-. Rabbit antibodies to the purified preparation detected only one component in the crude starting material in immuno-blotting experiments. Preincubation with antiserum resulted in loss of enzyme activity, showing that the antibodies were directed against the lipase.  相似文献   

18.
Amino acids produced from protein degradation are the major energy source for differentiation and aging in Dictyostelium discoideum. Considering the reactions involved in the conversion of amino acids from an average protein into tricarboxylic acid cycle intermediates, a route from a cycle intermediate (probably malate) to acetyl coenzyme A is required for the complete utilization of amino acids. Citrate was isolated from cells pulse-labeled with (14)C-labeled amino acids and was cleaved with citrate lyase. When cells were pulse-labeled with [U-(14)C]-glutamate the specific radioactivity of the acetate and oxaloacetate portions of citrate were consistent with the conclusion that one-third of the carbon flowing through the tricarboxylic acid cycle is removed for the synthesis of acetyl coenzyme A. The data were also consistent with the patterns of carbon flux required to maintain steady-state levels of cycle intermediates in cells catabolizing amino acids. It is suggested that the malic enzyme (EC 1.1.1.40) catalyzes the synthesis of acetyl coenzyme A from malate and is responsible for the observed citrate labeling pattern. In cell extracts the activity of this enzyme increased markedly with the onset of differentiation. The properties of partially purified (40-fold) malic enzyme isolated at culmination indicated that the enzyme was allosteric and was positively affected by aspartate and glutamate. Thus, amino acid production from protein degradation would stimulate a reaction essential for the efficient utilization of these amino acids for energy.  相似文献   

19.
In this work five peptides with Cys-Xaa-Cys motif were studied including Ac-Cys-Gly-Cys-NH(2), Ac-Cys-Pro-Cys-Pro-NH(2), their N-unprotected analogues and the N-terminal fragment of metallothionein-3, Met-Asp-Pro-Glu-Thr-Cys-Pro-Cys-Pro-NH(2). All these peptides were found to be very effective ligands for Ni(2+), Zn(2+) and Cd(2+) ions. Potentiometric and spectroscopic (UV-Vis, CD and MCD) studies have proved that sulfur atoms are critical donors for the metal ions coordination. The amide nitrogen may participate in the metal ion binding only in the case when Gly is adjacent to Cys residues. Ac-Cys-Gly-Cys-NH(2) may serve as a low molecular weight model for cluster A, which is a binding unit of nickel ion in acetyl coenzyme A synthase. This bifunctional enzyme from anaerobic microorganisms catalyzes the formation of acetyl coenzyme A from CO, a methyl group donated by the corrinoid-iron-sulfur protein and coenzyme A. Other peptides studied in this work were Ac-Cys-Pro-Cys-Pro-NH(2) and Met-Asp-Pro-Glu-Thr-Cys-Pro-Cys-NH(2) originating from metallothionein sequence. These motifs are characteristic for the sequence of cysteine rich metallothionein-3 (MT-3) called also neuronal growth inhibitory factor (GIF). Cys-Pro-Cys-Pro fragment of protein was demonstrated to be crucial for the inhibitory activity of the protein.  相似文献   

20.
The amino acid sequence of rat brain prostaglandin D synthetase (Urade, Y., Fujimoto, N., and Hayaishi, O. (1985) J. Biol. Chem. 260, 12410-12415) was determined by a combination of cDNA and protein sequencing. cDNA clones specific for this enzyme were isolated from a lambda gt11 rat brain cDNA expression library. Nucleotide sequence analyses of cloned cDNA inserts revealed that this enzyme consisted of a 564- or 549-base pair open reading frame coding for a 188- or 183-amino acid polypeptide with a Mr of 21,232 or 20,749 starting at the first or second ATG. About 60% of the deduced amino acid sequence was confirmed by partial amino acid sequencing of tryptic peptides of the purified enzyme. The recognition sequence for N-glycosylation was seen at two positions of amino acid residues 51-53 (-Asn-Ser-Ser-) and 78-80 (-Asn-Leu-Thr-) counted from the first Met. Both sites were considered to be glycosylated with carbohydrate chains of Mr 3,000, since two smaller proteins with Mr 23,000 and 20,000 were found during deglycosylation of the purified enzyme (Mr 26,000) with N-glycanase. The prostaglandin D synthetase activity was detected in fusion proteins obtained from lysogens with recombinants coding from 34 and 19 nucleotides upstream and 47 and 77 downstream from the first ATG, indicating that the glycosyl chain and about 20 amino acid residues of N terminus were not essential for the enzyme activity. The amino acid composition of the purified enzyme indicated that about 20 residues of hydrophobic amino acids of the N terminus are post-translationally deleted, probably as a signal peptide. These results, together with the immunocytochemical localization of this enzyme to rough-surfaced endoplasmic reticulum and other nuclear membrane of oligodendrocytes (Urade, Y., Fujimoto, N., Kaneko, T., Konishi, A., Mizuno, N., and Hayaishi, O. (1987) J. Biol. Chem. 262, 15132-15136) suggest that this enzyme is a membrane-associated protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号