首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyrosyl-DNA phosphodiesterase 1 (TDP1) can remove a wide variety of 3′ and 5′ terminal DNA adducts. Genetic studies in yeast identified TDP1 as a regulator of non-homologous end joining (NHEJ) fidelity in the repair of double-strand breaks (DSBs) lacking terminal adducts. In this communication, we show that TDP1 plays an important role in joining cohesive DSBs in human cells. To investigate the role of TDP1 in NHEJ in live human cells we used CRISPR/cas9 to produce TDP1-knockout (TDP1-KO) HEK-293 cells. As expected, human TDP1-KO cells were highly sensitive to topoisomerase poisons and ionizing radiation. Using a chromosomally-integrated NHEJ reporter substrate to compare end joining between wild type and TDP1-KO cells, we found that TDP1-KO cells have a 5-fold reduced ability to repair I-SceI-generated DSBs. Extracts prepared from TDP1-KO cells had reduced NHEJ activity in vitro, as compared to extracts from wild type cells. Analysis of end-joining junctions showed that TDP1 deficiency reduced end-joining fidelity, with a significant increase in insertion events, similar to previous observations in yeast. It has been reported that phosphorylation of TDP1 serine 81 (TDP1-S81) by ATM and DNA-PK stabilizes TDP1 and recruits TDP1 to sites of DNA damage. We found that end joining in TDP1-KO cells was partially restored by the non-phosphorylatable mutant TDP1-S81A, but not by the phosphomimetic TDP1-S81E. We previously reported that TDP1 physically interacted with XLF. In this study, we found that XLF binding by TDP1 was reduced 2-fold by the S81A mutation, and 10-fold by the S81E phosphomimetic mutation. Our results demonstrate a novel role for TDP1 in NHEJ in human cells. We hypothesize that TDP1 participation in human NHEJ is mediated by interaction with XLF, and that TDP1-XLF interactions and subsequent NHEJ events are regulated by phosphorylation of TDP1-S81.  相似文献   

2.
Chromosomal breaks are repaired by homologous recombination (HR) or non-homologous end joining (NHEJ) mechanisms. The Ku70/Ku80 heterodimer binds DNA ends and plays roles in NHEJ and telomere maintenance in organisms ranging from yeast to humans. We have previously identified a ku80 mutant of the model plant Arabidopsis thaliana and shown the role of Ku80 in telomere homeostasis in plant cells. We show here that this mutant is hypersensitive to the DNA-damaging agent methyl methane sulphonate and has a reduced capacity to carry out NHEJ recombination. To understand the interplay between HR and NHEJ in plants, we measured HR in the absence of Ku80. We find that the frequency of intrachromosomal HR is not affected by the absence of Ku80. Previous work has clearly implicated the Ku heterodimer in Agrobacterium-mediated T-DNA transformation of yeast. Surprisingly, ku80 mutant plants show no defect in the efficiency of T-DNA transformation of plants with Agrobacterium, showing that an alternative pathway must exist in plants.  相似文献   

3.
The ascomycete Magnaporthe grisea is a model species for the study of plant fungal interactions. As in many filamentous fungi, targeted gene replacement occurs at low frequency in M. grisea (average 7%). mus52/KU80 is a gene essential for non-homologous end joining (NHEJ) of DNA double-strand breaks. Its deletion increases the frequency of targeted gene replacement in fungi [Ninomiya, Y., Suzuki, K., Ishii, C., Inoue, H., 2004. Highly efficient gene replacements in Neurospora strains deficient for non-homologous end joining. Proc. Natl. Acad. Sci. USA 101(33), 12248-53]. M. grisea KU80 deletion mutants were constructed and displayed wild-type phenotypes regarding pathogenicity, growth, sporulation and mating. MgADE4 targeted gene replacement frequency was increased in Deltaku80 mutants (80% vs 5%) and high frequencies (>80%) were observed at seven other loci. However, the deletion of MgKU80 did not increase the frequency of ACE1 replacement indicating that this locus has an intrinsic reduced ability for gene replacement. These results open the way to large-scale reverse genetics experiments in M. grisea facilitating the study of the infection process.  相似文献   

4.
Non-homologous end joining (NHEJ) is an important DNA repair pathway for DNA double-strand breaks. Several proteins, including Ku, DNA-PKcs, Artemis, XRCC4/Ligase IV and XLF, are involved in the NHEJ for the DNA damage detection, DNA free end processing and ligation. The classical model of NHEJ is a sequential model in which DNA-PKcs is first recruited by the Ku bound DNA prior to any other repair proteins. Recent experimental study ( [McElhinny et al., 2000], [Costantini et al., 2007], [17] and [Yano and Chen, 2008]) suggested that the recruitment ordering is not crucial. In this work, by proposing a mathematical model in terms of biochemical reaction network and performing stability and related analysis, we demonstrate theoretically that if DSB repair pathway independent of DNA-PKcs exists, then the classical sequential model and new two-phase model are essentially indistinguishable in the sense that DSB can be repaired thoroughly in both models when the repair proteins are sufficient.  相似文献   

5.
6.
Velma V  Carrero ZI  Cosman AM  Hebert MD 《FEBS letters》2010,584(23):4735-4739
Coilin is a nuclear protein that plays a role in Cajal body formation. The function of nucleoplasmic coilin is unknown. Here we report that coilin interacts with Ku70 and Ku80, which are major players in the DNA repair process. Ku proteins compete with SMN and SmB′ proteins for coilin interaction sites. The binding domain on coilin for Ku proteins cannot be localized to one discrete region, and only full-length coilin is capable of inhibiting in vitro non-homologous DNA end joining (NHEJ). Since Ku proteins do not accumulate in CBs, these findings suggest that nucleoplasmic coilin participates in the regulation of DNA repair.

Structured summary

MINT-8052983:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SmB′ (uniprotkb:P14678) by pull down (MI:0096)MINT-8052941:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by competition binding (MI:0405)MINT-8052765:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052971:coilin (uniprotkb:P38432) physically interacts (MI:0915) with SMN (uniprotkb:Q16637) by pull down (MI:0096)MINT-8052957:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by competition binding (MI:0405)MINT-8052894, MINT-8052908:coilin (uniprotkb:P38432) binds (MI:0407) to Ku80 (uniprotkb:P13010) by pull down (MI:0096)MINT-8052804:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku80 (uniprotkb:P13010) by anti bait coimmunoprecipitation (MI:0006)MINT-8052925:coilin (uniprotkb:P38432) binds (MI:0407) to Ku70 (uniprotkb:P12956) by pull down (MI:0096)MINT-8052786:Ku80 (uniprotkb:P13010) physically interacts (MI:0914) with coilin (uniprotkb:P38432) and Ku70 (uniprotkb:P12956) by anti bait coimmunoprecipitation (MI:0006)MINT-8052776:coilin (uniprotkb:P38432) physically interacts (MI:0915) with Ku70 (uniprotkb:P12956) by pull down (MI:0096)  相似文献   

7.
DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer   总被引:5,自引:0,他引:5  
  相似文献   

8.
Non-homologous DNA end joining (NHEJ) is considered the major pathway of double-strand break (DSB) repair in mammalian cells and depends, among other things, on the DNA end-binding Ku70/80 heterodimer. To investigate the function of Ku in NHEJ we have compared the ability of cell-free extracts from wild-type CHO-K1 cells, Ku80-deficient xrs6 cells and Ku80-cDNA-complemented xrs6 cells (xrs6-Ku80) to rejoin different types of DSB in vitro. While the two Ku80-proficient extracts were highly efficient and accurate in rejoining all types of DNA ends, the xrs6 extract displayed strongly decreased NHEJ efficiency and accuracy. The lack of accuracy is most evident in non-homologous terminus configurations containing 3′-overhangs that abut a 5′-overhang or blunt end. While the sequences of the 3′-overhangs are mostly preserved by fill-in DNA synthesis in the Ku80-proficient extracts, they are always completely lost in the xrs6 extract so that, instead, small deletions displaying microhomology patches at their breakpoints arise. In summary, our results are consistent with previous results from Ku-deficient yeast strains and indicate that Ku may serve as an alignment factor that not only increases NHEJ efficiency but also accuracy. Furthermore, a secondary NHEJ activity is present in the absence of Ku which is error-prone and possibly assisted by base pairing interactions.  相似文献   

9.
Cells of vertebrates remove DNA double-strand breaks (DSBs) from their genome predominantly utilizing a fast, DNA-PKcs-dependent form of non-homologous end joining (D-NHEJ). Mutants with inactive DNA-PKcs remove the majority of DNA DSBs utilizing a slow, DNA-PKcs-independent pathway that does not utilize genes of the RAD52 epistasis group, is error-prone and can therefore be classified as a form of NHEJ (termed basic or B-NHEJ). We studied the role of DNA ligase IV in these pathways of NHEJ. Although biochemical studies show physical and functional interactions between the DNA-PKcs/Ku and the DNA ligase IV/Xrcc4 complexes suggesting operation within the same pathway, genetic evidence to support this notion is lacking in mammalian cells. Primary human fibroblasts (180BR) with an inactivating mutation in DNA ligase IV, rejoined DNA DSBs predominantly with slow kinetics similar to those observed in cells deficient in DNA-PKcs, or in wild-type cells treated with wortmannin to inactivate DNA-PK. Treatment of 180BR cells with wortmannin had only a small effect on DNA DSB rejoining and no effect on cell radiosensitivity to killing although it sensitized control cells to 180BR levels. This is consistent with DNA ligase IV functioning as a component of the D-NHEJ, and demonstrates the unperturbed operation of the DNA-PKcs-independent pathway (B-NHEJ) at significantly reduced levels of DNA ligase IV. In vitro, extracts of 180BR cells supported end joining of restriction endonuclease-digested plasmid to the same degree as extracts of control cells when tested at 10 mM Mg(2+). At 0.5 mM Mg(2+), where only DNA ligase IV is expected to retain activity, low levels of end joining ( approximately 10% of 10 mM) were seen in the control but there was no detectable activity in 180BR cells. Antibodies raised against DNA ligase IV did not measurably inhibit end joining at 10 mM Mg(2+) in either cell line. Thus, in contrast to the situation in vivo, end joining in vitro is dominated by pathways with properties similar to B-NHEJ that do not display a strong dependence on DNA ligase IV, with D-NHEJ retaining only a limited contribution. The implications of these observations to studies of NHEJ in vivo and in vitro are discussed.  相似文献   

10.
Non-homologous end-joining (NHEJ)-mediated repair of DNA double-strand breaks (DSBs) requires the formation of a Ku70/Ku80/DNA-PKcs complex at the DSB sites. A previous study has revealed Ku80 cleavage by caspase-3 during apoptosis. However, it remains largely unknown whether and how Ku80 cleavage affects its function in mediating NHEJ-mediated DNA repair. Here we report that Ku80 can be cleaved by caspases-2 at D726 upon a transient etoposide treatment. Caspase-2-mediated Ku80 cleavage promotes Ku80/DNA-PKcs interaction as the D726A mutation diminished Ku80 interaction with DNA-PKcs, while a Ku80 truncate (Ku80 ΔC6) lacking all the 6 residues following D726 rescued the weakened Ku80/DNA-PKcs interaction caused by caspase-2 knockdown. As a result, depletion or inhibition of caspase-2 impairs NHEJ-mediated DNA repair, and such impairment can be reversed by Ku80 ΔC6 overexpression. Taken together, our current study provides a novel mechanism for regulating NHEJ-mediated DNA repair, and sheds light on the function of caspase-2 in genomic stability maintenance.  相似文献   

11.
In this work we report that the Saccharomyces cerevisiae RAD9, RAD24, RAD17, MEC1, MEC3 and RAD53 checkpoint genes are required for efficient non-homologous end joining (NHEJ). RAD9 and RAD24 function additionally in this process. Defective NHEJ in rad9Delta-rad24Delta, but not yku80Delta cells, is only partially rescued by imposing G1 or G2/M delays. Thus, checkpoint functions other than transient cell cycle delays may be required for normal levels of NHEJ. Epistasis analysis also indicated that YKU80 and RAD9/RAD24 function in the same pathway for repair of lesions caused by MMS and gamma-irradiation. Unlike NHEJ, the checkpoint pathway is not required for efficient site-specific integration of plasmid DNA into the yeast genome, which is RAD52-dependent, but RAD51-independent.  相似文献   

12.
13.
Mammalian cells have an activity of mutagenic repair for DNA double-strand breaks (DSBs), microhomology-mediated end joining (MMEJ), in which DNA ends are joined via microhomologous sequences flanking the breakpoint. MMEJ has been indicated to be undertaken without Ku proteins, which are essential factors for non-homologous end joining (NHEJ). On the other hand, recent studies with cell-free (in vitro) systems indicated the involvement of Ku proteins in MMEJ, suggesting that MMEJ could be also undertaken by a Ku-dependent pathway. To clarify whether Ku proteins are essential in MMEJ in vivo, linearized plasmid DNAs with microhomologous sequences of 10bp at both ends were introduced as repair substrates into Ku80-proficient and Ku80-deficient CHO cells, and were subjected to MMEJ and NHEJ. Activities of MMEJ and NHEJ, respectively, of the cells were evaluated by mathematical modeling for the increase in fluorescence of GFP proteins produced from repaired products. The Ku80 deficiency caused approximately 75% reduction of the MMEJ activity in CHO cells, while it caused is > or =90% reduction of the NHEJ activity. Therefore, it was indicated that there is a Ku-dependent pathway for MMEJ; however, MMEJ is less dependent on Ku80 protein than NHEJ. The fraction of MMEJ products increased in proportion to the increase in the amounts of substrates. The results suggest that the increase in DSBs makes the cell more predominant for MMEJ. MMEJ might function as a salvage pathway for DSBs that cannot be repaired by NHEJ.  相似文献   

14.
Evidence for Ku70/Ku80 association with full-length RAG1   总被引:2,自引:1,他引:2  
Antigen receptor genes are assembled by a site-specific DNA rearrangement process called V(D)J recombination. This process proceeds through two distinct phases: a cleavage phase in which the RAG1 and RAG2 proteins introduce DNA double-strand breaks at antigen receptor gene segments, and a joining phase in which the resulting DNA breaks are processed and repaired via the non-homologous end-joining (NHEJ) repair pathway. Genetic and biochemical evidence suggest that the RAG proteins play an active role in guiding the repair of DNA breaks introduced during V(D)J recombination to the NHEJ pathway. However, evidence for specific association between the RAG proteins and any of the factors involved in NHEJ remains elusive. Here we present evidence that two components of the NHEJ pathway, Ku70 and Ku80, interact with full-length RAG1, providing a biochemical link between the two phases of V(D)J recombination.  相似文献   

15.
  相似文献   

16.
Classical-non-homologous end-joining (C-NHEJ) is considered the main pathway for repairing DNA double strand breaks (DSB) in mammalian cells. When C-NHEJ is defective, cells may switch DSB repair to an alternative-end-joining, which depends on PARP1 and is more erroneous. This PARP1-EJ is suggested to be active especially in tumor cells contributing to their genomic instability. Here, we define conditions under which cells would switch the repair to PARP1-EJ. Using the end jining repair substrate pEJ, we revealed that PARP1-EJ is solely used when Ku is deficient but not when either DNA-PKcs or Xrcc4 is lacking. In the latter case, DSB repair, however, could be shuttled to PARP1-EJ after additional Ku80 down-regulation, which partly rescued the DSB repair in these mutants. We demonstrate here that PARP-EJ may work on DSB ends at high fidelity manner, as evident from the unchanged efficiency upon blocking end resection by either roscovitin or mirin. Furthermore, we demonstrate for that PARP-EJ is likewise involved in the repair of multiple DSBs (I-PpoI- and IR-induced). Importantly, we identified a chromatin signature associated with the switch to PARP1-EJ which is characterized by a strong enrichment of both PARP1 and LigIII at damaged chromatin. Together, these data indicate that Ku is the main regulator for the hierarchal organization between C-NHEJ and PARP1-EJ.  相似文献   

17.
Zhang J  Mao Z  Xue W  Li Y  Tang G  Wang A  Zhang Y  Wang H 《Current microbiology》2011,62(4):1342-1346
In this study, the ku70 and ku80 homologs from the Aspergillus niger genome were identified and their function was analyzed using targeted mutagenesis. The role of the ku80 gene in non-homologous end-joining (NHEJ) was investigated by calculating the frequency of homologous recombination. The transformation test verified that the frequency of homologous recombination significantly increased, from 1.78 to 65.6% in ku80 single deletion strains and to 100% in ku70/ku80 double deletion strains. These results suggest that the ku80 gene is important for non-homologous end-joining. Although the morphology of the ku deletion strains colonies was similar to that of the wildtype strain, mutants were more sensitive to the mutagen phleomycin. Furthermore, the purified ku80 deletion strain produced some sectored colonies on hygromycin B-containing plates. This result suggests that the ku80 gene deletion leads to genomic instability in A. niger.  相似文献   

18.
19.
20.
XRCC4 and XLF are structurally related proteins important for DNA Ligase IV function. XRCC4 forms a tight complex with DNA Ligase IV while XLF interacts directly with XRCC4. Both XRCC4 and XLF form homodimers that can polymerize as heterotypic filaments independently of DNA Ligase IV. Emerging structural and in vitro biochemical data suggest that XRCC4 and XLF together generate a filamentous structure that promotes bridging between DNA molecules. Here, we show that ablating XRCC4's affinity for XLF results in DNA repair deficits including a surprising deficit in VDJ coding, but not signal end joining. These data are consistent with a model whereby XRCC4/XLF complexes hold DNA ends together--stringently required for coding end joining, but dispensable for signal end joining. Finally, DNA-PK phosphorylation of XRCC4/XLF complexes disrupt DNA bridging in vitro, suggesting a regulatory role for DNA-PK's phosphorylation of XRCC4/XLF complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号