首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 430 毫秒
1.
The influence of handling stress on tonic LH secretion was evaluated in eight ovariectomized Hereford cows. Four cows (acclimated group) were previously acclimated to stanchions and procedures for blood collection, whereas the other four cows (unacclimated group) were stanchioned and handled for the first time 2 hr before the evaluation period. Blood samples (10 ml) for cortisol, luteinizing hormone (LH) and progesterone quantitation were collected at 10-min intervals for 4 hr via an indwelling cannula inserted into the jugular vein 1 hr before the evaluation period. Mean plasma concentration of cortisol was lower (5.7 vs 66.1 ng/ml; P<0.01) but LH was higher (8.1 vs 4.1 ng/ml; P<0.05) in acclimated cows than in unacclimated cows. Plasma cortisol and LH concentrations were correlated negatively among cows (r = -0.83; P<0.01). Two- to four-fold increases (10 to 20 ng/ml) in systemic cortisol concentrations did not appear to affect LH secretion, whereas 10-to 20-fold increases associated with intensive stress suppressed tonic LH secretion, especially pulsatile LH releases. Plasma progesterone concentrations did not differ between the two treatment groups. Results suggest that the influence of stress on gonadotropin secretion, and subsequent reproductive responses, is dependent on the magnitude of the adrenal steroidogenic response and the animal's adaptation to stress. These results indicate the necessity to minimize and monitor animal stress when studying LH secretion.  相似文献   

2.
The effects of melatonin implant treatment over a four week period on LH, estradiol (E2) and progesterone (P4) secretion during the breeding season were studied in ovary-intact and ovariectomized pony mares. Mares with melatonin implants had significantly higher daytime melatonin concentrations than mares with sharm implants (P = 0.0065). In ovariectomized mares, LH secretion did not differ between mares with melatonin and sham implants. In ovary-intact mares, melatonin implants altered the pattern of LH secretion (P = 0.0023) in such a way that an increase in LH secretion was observed during the periovulatory period. Estradiol and P4 secretion were unaffected by melatonin implants. These results suggest that constant administration of melatonin may enhance the secretion of LH during the periovulatory surge but does not adversely affect E2, P4 or basal LH secretion in mares during the breeding season.  相似文献   

3.
The effects of RU 486 on the modulation of LH release by progesterone were investigated in cultured anterior pituitary cells from ovariectomized adult female rats. The inhibitory effect of progesterone on LH secretion was demonstrable in estrogen-treated pituitary cells, in which addition of 10(-6) M progesterone to cells cultured in the presence of 10(-9) M estradiol for 52 h reduced the LH response to GnRH (10(-11) to 10(-7) M). When RU 486 was superimposed upon such combined treatment with estradiol and progesterone, the suppressive effect of progesterone on GnRH-induced LH release was completely abolished. The converse (facilitatory) effect of progesterone on LH secretion was observed in pituitary cells pretreated with 10(-9) M estradiol for 48 h and then with 10(-6) M progesterone for 4 h. When RU 486 was added together with progesterone during the 4 h treatment period, the facilitatory effect of progesterone was blocked and LH release fell to below the corresponding control value. The direct effect of RU 486 on LH secretion in the absence of exogenous progesterone was evaluated in cells cultured in the absence or presence of 10(-9) M estradiol and then treated for 4 to 24 h with increasing concentrations of RU 486 (10(-12) to 10(-5) M) and stimulated with GnRH (10(-9) M) during the last 3 h of incubation. In estrogen-deficient cultures, 4 h exposure to RU 486 concentrations of 10(-6) M and above decreased the LH response to GnRH by up to 50%. In cultures pretreated with 10(-9) M estradiol, GnRH-stimulated LH responses was inhibited by much lower RU 486 concentrations, of 10(-9) M and above. After 24 h of incubation the effects of RU 486 were similar in control and estradiol-pretreated pituitary cell cultures. Thus, RU 486 alone has a significant inhibitory effect on LH secretion that is enhanced in the presence of estrogen. The antiprogestin is also a potent antagonist of both the inhibitory and the facilitatory actions of progesterone upon pituitary gonadotropin release in vitro.  相似文献   

4.
D W Brann  C D Putnam  V B Mahesh 《Steroids》1991,56(2):103-111
The stimulatory and inhibitory effects of progesterone on luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion were found to be dependent on the length of estrogen exposure in ovariectomized estrogen-primed rats. Progesterone suppressed LH and FSH secretion when administered 16 hours after a single injection of estradiol to ovariectomized rats. If the estradiol treatment was extended over 40 hours by two injections of estradiol 24 hours apart, progesterone administration led to a highly significant elevation of both serum LH and FSH levels 6 hours later. In addition to the direct stimulatory effect on LH and FSH release, progesterone, when injected 1 hour before, was able to antagonize the suppressive effect of a third injection of estradiol on LH and FSH release. In the immature ovariectomized estrogen-primed rat, 10 IU of ACTH brought about a release of progesterone and corticosterone 15 minutes later and LH and FSH 6 hours later. Progesterone, but not corticosterone, appeared to be responsible for the effect of ACTH on gonadotropin release. The synthetic corticosteroid triamcinolone acetonide brought about LH and FSH release in the afternoon, while cortisol, similar to corticosterone, was unable to do so. Nevertheless, triamcinolone acetonide and cortisol brought about increased secretion of FSH the following morning.  相似文献   

5.
Six young female fallow deer, including 3 that were ovariectomized at 9 months of age, were blood sampled at frequent intervals after i.v. injections of (1) ACTH analogue (tetracosactrin), (2) GnRH analogue (buserelin) and (3) saline solution on separate occasions at 11, 13, 15 and 18 months of age. Relative to prechallenge plasma values, ACTH administration resulted in a 4-10-fold increase in mean plasma progesterone concentrations, but only a 10-45% increase in mean plasma cortisol concentrations, within 40 min for entire and ovariectomized does during the prepubertal periods (11, 13 and 15 months) and for ovariectomized does during the post-pubertal period (18 months). Post-pubertal entire does exhibited high mean basal plasma progesterone concentrations (3-4 ng/ml) indicating a luteal source of secretion, with the ACTH-induced progesterone response being additive to the luteal progesterone but of similar magnitude to responses in the ovariectomized does. There was no significant ACTH challenge effect on mean plasma LH concentrations for entire or ovariectomized does at all ages. GnRH administration had no significant effects on mean plasma concentrations of progesterone and cortisol of entire and ovariectomized does, although there was a small increase in mean plasma progesterone values in post-pubertal does that may have reflected a luteal response to GnRH (via LH). GnRH challenge resulted in marked increases in mean plasma LH concentrations but the response patterns were different for the 2 types of does, being more rapid and of higher magnitude for ovariectomized does.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The hypotheses that secretion of luteinizing hormone (LH) varies with season and that estradiol may modulate the seasonal fluctuation in secretion of LH in cows were investigated. Seven mature cows were ovariectomized approximately 30 days before initiation of the experiment. Three of the ovariectomized cows (OVX-E2) were administered a subcutaneous estradiol implant that provided low circulating levels of 17 beta-estradiol. The remaining 4 cows (OVX) were not implanted. From December 21, 1982, to September 20, 1984, blood samples were collected sequentially (at 10-min intervals for 6 h) at each summer and winter solstice, and each spring and autumn equinox. In addition, from March 17, 1983, to March 17, 1984, sequential samples were collected midway between each solstice and equinox. Concentration of LH was measured in all samples, and concentration of estradiol was measured in pools of samples. An annual cycle in mean serum concentration of LH and amplitude of LH pulses was detected in both groups of cows. The seasonal pattern did not differ in the two treatment groups. Serum concentration of LH and amplitude of LH pulses were highest around the spring equinox, decreased gradually to the autumn equinox, and then increased and peaked again during the following spring equinox. Frequency of LH pulses and concentration of estradiol in serum did not vary with season. Circulating concentrations of LH and amplitude of pulses tended to be higher in OVX-E2 than OVX cows throughout the experimental period. Frequency of pulses of LH was lower in OVX-E2 than OVX cows throughout the experiment. Concentrations of estradiol were higher in the implanted cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Various stressors suppress pulsatile secretion of luteinizing hormone (LH) in ewes and cortisol has been shown to be a mediator of this effect under various conditions. In contrast, little is known about the impact of stress and cortisol on sexual behavior in the ewe. Therefore, we tested the hypothesis that both psychosocial stress and stress-like levels of cortisol will reduce the level of attractivity, proceptivity and receptivity in addition to suppressing LH secretion in the ewe. In Experiment 1, a layered stress paradigm of psychosocial stress was used, consisting of isolation for 4 h with the addition of restraint, blindfold and noise of a barking dog (predator stress) at hourly intervals. This stress paradigm reduced LH pulse amplitude in ovariectomized ewes. In Experiment 2, ovariectomized ewes were artificially induced into estrus with progesterone and estradiol benzoate treatment and the layered stress paradigm was applied. LH was measured and sexual behavior was assessed using T-mazes and mating tests. Stress reduced pulsatile LH secretion, and also reduced attractivity and proceptivity of ewes but had no effect on receptivity. In Experiment 3, ewes artificially induced into estrus were infused with cortisol for 30 h. Cortisol elevated circulating plasma concentrations of cortisol, delayed the onset of estrus and resulted in increased circling behavior of ewes (i.e. moderate avoidance) during estrus and increased investigation and courtship from rams. There was no effect of cortisol on attractivity, proceptivity or receptivity during estrus. We conclude that psychosocial stress inhibits LH secretion, the ability of ewes to attract rams (attractivity) and the motivation of ewes to seek rams and initiate mating (proceptivity), but cortisol is unlikely to be the principal mediator of these effects.  相似文献   

8.
The purpose of this study was to investigate whether progesterone exerted progesterone receptor mediated direct effects on the anterior pituitary in the secretion of FSH and whether such effects were mediated through the 5 alpha-reduction of progesterone. Treatment of anterior pituitary dispersed cells for 48 h with 0.5 nM estradiol reduced the ED50 for gonadotropin releasing hormone (GnRH)-stimulated FSH release from 0.58 to 0.36 ng/ml and the ED50 for GnRH-induced LH release from 0.54 to 0.19 ng/ml. When dispersed pituitary cells were treated with 0.5 nM estradiol and exposed to various doses of progesterone for 1 to 6 h, the most consistent rise in basal and GnRH-stimulated FSH release was observed with the 50 nM dose of progesterone with a 3-h exposure period. All three doses of progesterone elevated basal LH and GnRH-stimulated LH was increased by the 50 and 100 nM doses of progesterone during the 3-h period of treatment. Using the 50 nM dose of progesterone, basal and GnRH-stimulated LH was increased after 2, 3 and 6 h of progesterone treatment. When the period of exposure of progesterone was extended to 12, 36 or 48 h, there was a significant inhibition of GnRH-stimulated FSH release. GnRH-stimulated LH release was inhibited at 36 and 48 but not 12 h after progesterone treatment. These studies showed that the effect of progesterone administered for periods of 1 to 6 h enhanced the secretion of LH and FSH whereas progesterone administered for periods beyond 12 h inhibited FSH and LH release by dispersed pituitary cells in culture. These results are similar to those observed in vivo after progesterone treatment. Furthermore estrogen priming of the dispersed pituitary cells was necessary to observe the effects of progesterone. The progesterone antagonist RU486 prevented the progesterone-induced rise in GnRH-stimulated FSH release. Furthermore the 5 alpha-reductase inhibitor N,N-diethyl-4-methyl-3-oxo-4-aza-5 alpha-androstane- 17 beta-carboxamide also prevented the progesterone-induced rise in GnRH-stimulated FSH release in estrogen-treated dispersed pituitary cells. These results indicate that the anterior pituitary is a major site of action of progesterone in the release of FSH and that 5 alpha-reduction of progesterone plays an important role in FSH release.  相似文献   

9.
We recently demonstrated that progesterone and estradiol inhibit pituitary LH secretion in a synergistic fashion. This study examines the direct feedback of progesterone on the estradiol-primed pituitary. Nine ovariectomized (OVX) ewes underwent hypothalamic-pituitary disconnection (HPD) and were infused with 400 ng GnRH every 2 h throughout the experiment. After 7 days of infusion, estradiol was implanted s.c. Four days later, estradiol implants were exchanged for blank implants in 4 ewes and for progesterone implants in 5 ewes. These implants remained in place for another 4 days. Blood samples were collected around exogenous GnRH pulses before and 0.5 to 96 h after implant insertion and exchange. Serum LH and progesterone concentrations were determined through RIA. One month later, 4 of the HPD-OVX ewes previously implanted with steroids were reinfused with GnRH and the implantation protocol was repeated using blank implants only. In estradiol-primed ewes, progesterone significantly lowered LH secretion after 12 h of implantation and LH secretion remained inhibited while progesterone implants were in place (p less than 0.05). Removing estradiol transiently lowered LH secretion, and this effect was significant only 24 h after estradiol withdrawal (p less than 0.05). These data suggest that progesterone has a direct, estradiol-dependent inhibitory effect on pituitary LH release and that estradiol may sustain pituitary gonadotrope response to GnRH.  相似文献   

10.
Earlier observations in our laboratory indicated that i.v. infusion of human/rat corticotropin-releasing hormone (hCRH) suppresses pulsatile luteinizing hormone (LH) and follicle-stimulating hormone (FSH) release in ovariectomized rhesus monkeys. Since cortisol secretion increased significantly as well, it was not possible to exclude the possibility that this inhibitory effect of hCRH on gonadotropins was related to the activation of the pituitary/adrenal axis. The purpose of the present study was to determine the role of pituitary/adrenal activation in the effect of hCRH on LH and FSH secretion. We compared the effects of 5-h i.v. infusions of hCRH (100 micrograms/h, n = 7) and of human adrenocorticotropic hormone (ACTH) (1-24) (5 micrograms/h, n = 3; 10 micrograms/h, n = 3, 20 micrograms/h, n = 3) to ovariectomized monkeys on LH, FSH, and cortisol secretion. As expected, during the 5-h ACTH infusions, cortisol levels increased by 176-215% of baseline control, an increase similar to that observed after CRH infusion (184%). However, in contrast to the inhibitory effect observed during the CRH infusion, LH and FSH continued to be released in a pulsatile fashion during the ACTH infusions, and no decreases in gonadotropin secretion were observed. The results indicated that increases in ACTH and cortisol did not affect LH and FSH secretion and allowed us to conclude that the rapid inhibitory effect of CRH on LH and FSH pulsatile release was not mediated by activation of the pituitary/adrenal axis.  相似文献   

11.
These experiments tested the hypothesis that administration of steroid hormones to ovariectomized (OVX) mares during the vernal transition to the breeding season would influence LH and FSH secretion. Circulating gonadotropin concentrations, response to exogenous GnRH, and pituitary gonadotropin content were monitored. Experiments 1 and 2 were conducted, beginning 10 March, and 3 February, respectively, utilizing a total of 30 long-term OVX pony mares. In experiment 1, mares were administered vehicle (n = 5) or estradiol-17 beta (E2, n = 5, 5 mg/3 ml sesame oil), twice daily for 16 days. Blood samples were collected daily for assessment of circulating LH and FSH concentrations. On Day 10 of treatment, 400 micrograms GnRH were administered to all mares. LH increased significantly over days of treatment in the estradiol-treated group, but pituitary response to GnRH tended to be less than in control mares. Circulating FSH tended to decline over days of treatment in estradiol-treated mares, and the pituitary response to GnRH was significantly reduced. Pituitary LH, but not FSH, was increased on Day 16 of treatment with estradiol. In experiment 2, 20 OVX mares received, twice daily, vehicle (n = 5), E2, n = 5; 5 mg), progesterone (P4, n = 5; 100 mg), or progesterone plus estradiol (P4/E2, n = 5; 100 + 5 mg). Treatment continued for 14 days. GnRH (100 micrograms) challenges were administered on Days 6 and 13 of treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

13.
In order to examine the effect of glucocorticoids on the menstrual cycle of rhesus monkeys, cortisol was injected twice daily during the follicular phase. This cortisol treatment did not alter basal gonadotropin secretion but blocked the normal follicular rise of estrogens, the gonadotropin surge and the luteal rise of progesterone, and delayed the onset of the next cycle. In a second study, estradiol benzoate (E2B) was injected on the sixth day following the start of menstrual bleeding either with or without concurrent adrenocorticotropic hormone (ACTH) treatment. E2B injection was able to stimulate surges of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) whether or not the animals had been treated with ACTH. These data suggest that, the action of cortisol, the final mediating step in the hypothalamic-pituitary-adrenal axis, occurs at the level of the gonads versus the pituitary in the rhesus monkey. While the pituitary response to endogenous gonadotropin-releasing hormone or exogenous E2B stimulation appears to remain unaffected, normal folliculogenesis is disrupted, preventing the follicular secretion of estrogens and the subsequent gonadotropin surges. The effects of corticosteroids are temporary, with normal cycling returning when plasma corticosteroids return to basal concentrations, albeit after a delay.  相似文献   

14.
The hypothesis that high levels of exogenous estradiol administered to heifers during the prepubertal period would decrease subsequent negative feedback of estradiol on luteinizing hormone (LH) secretion was tested. Fourteen prepubertal heifers were ovariectomized on Day 0. Ovariectomized heifers received either no further treatment (OVX, n = 4), a single estradiol implant on Day 0 (OVXE, n = 5), or the single implant on Day 0 and two additional implants between Days 16 and 30 (OVXE+ E, n = 5). Ten ovary-intact heifers received either no treatment (INT, n = 5) or were administered the two estradiol implants between Days 16 and 30 (INT+ 5, n = 5). Comparison of LH secretion in OVXE to OVXE+E, and in INT to INT+E resulted in significant time-by-treatment interactions (p less than 0.05 for both). As pubertal age approached, mean concentration of LH (p less than 0.05) and pulse frequency (p less than 0.05) increased more rapidly in OVXE+E and INT+E than in OVXE and INT, respectively. Amplitude of LH pulses was unaffected by treatment. When data were standardized to day of puberty in INT and INT+E heifers, mean LH concentration and LH pulse frequency increased as puberty approached in both groups. These data confirm earlier reports indicating that secretion of LH increases gradually as puberty approaches in heifers. It was concluded that administration of estradiol during the prepubertal period hastened the decline in the subsequent negative feedback of estradiol. Precocious puberty was not induced in ovary-intact females.  相似文献   

15.
Negative feedback of estrogen was investigated in ovariectomized female guinea pigs. Two weeks after ovariectomy, indwelling catheters were inserted into the jugular vein, and 3 days later, blood samples were taken every 10 min to determine the pattern of luteinizing hormone (LH) secretion. LH secretion in these guinea pigs was episodic, with a mean pulse period of 32 min. The mean pulse amplitude was 2.1 ng/ml, with mean plasma LH levels of 1.8 ng/ml. Twenty-five micrograms 17 beta-estradiol (E2), given i.v., caused a pronounced inhibition of pulsatile LH release. Twenty-five microliters of 100% ethanol (vehicle) had no effect on plasma LH values. In a second set of experiments, ovariectomized female guinea pigs were given two injections of luteinizing hormone-releasing hormone (LHRH) (1 microgram/kg BW, i.v.) separated by 30 min. Sharp rises in serum LH values were detected after each injection. A third injection of LHRH was administered after an injection of either 25 micrograms E2 or 25 microliters vehicle. In the presence of E2, the LH response was significantly (p less than 0.005) diminished, whereas the vehicle did not change the LH response to LHRH. These rapid effects of E2 on LH secretion and the pituitary responsiveness to LHRH infusion indicate that in the ovariectomized guinea pig E2 can directly block gonadotropin secretion. These findings are consistent with the hypothesis that negative feedback actions of E2 are directly on the membrane of the gonadotrope.  相似文献   

16.
We have shown recently that fasting permits leptin to modulate both luteinizing hormone (LH) and insulin secretion in cows. In rodents, leptin causes divergent effects on LH and insulin release that are dose dependent. To test the hypothesis that leptin effects on LH and insulin secretion in fasted cows are dose related, we examined the effects of various doses of recombinant ovine leptin (oleptin) in mature cows. Twenty ovariectomized beef cows, each bearing an estradiol implant to maintain basal estradiol concentrations, were used. All cows were fasted for 60 hr with free access to water and were assigned randomly to one of four groups (n = 5/group): 1) saline control; 2) leptin, 0.2 microg/kg; 3) leptin, 2.0 microg/kg; and 4) leptin, 20 microg/kg body wt. Blood samples were collected at 10-min intervals for 6 hr on Days 0 and 2, with saline or oleptin injected intravenously immediately after the first intensive sample on Day 2 (54 hr). Leptin caused a dose-related increase (P < 0.001) in mean concentrations of circulating LH. Stimulation of LH release by leptin was significant at the lowest (141% of control) and middle (122% of control) doses used, but no increase was observed for the highest dose. Increased mean concentrations of LH appeared to result from an augmentation of basal secretion, as pulse characteristics were not affected. After 54 hr of fasting, plasma insulin concentrations were lowered (P < 0.01) in all treatment groups compared to Day 0. After leptin injections, plasma insulin concentrations increased (P < 0.01) and reached highest concentrations during the first hour of sampling. However, this increase was sustained for several hours only in the intermediate (2.0 microg/kg) dose group. Collectively, our results show that leptin has potent positive effects on both LH and insulin secretion in fasted cows, but the anterior pituitary and endocrine pancreas appear to become downregulated in the presence of excess ligand.  相似文献   

17.
The effect of stress-like concentrations of cortisol on oestradiol-induced change in LH secretion and GnRH receptor expression was evaluated in orchidectomized sheep (wethers). Twenty-four wethers were assigned at random to one of the four treatment groups in a 2x2 factorial design (n=6 wethers/group). Wethers received cortisol (90 microg/kg/h; groups 2 and 4) or a comparable volume of cortisol delivery vehicle (groups 1 and 3) by continuous infusion for 48 h. During the final 24 h of infusion, wethers received oestradiol (6 ng/kg/h; groups 3 and 4) or oestradiol delivery vehicle (groups 1 and 2). The pattern of LH secretion was assessed during a 3-h period of intensive blood collection beginning 21 h after initiation of oestradiol infusion. Although neither cortisol nor oestradiol alone affected (P>0.05) mean serum concentration of LH or LH pulse frequency, serum LH and the frequency of secretory episodes of LH were significantly reduced (P<0.05) in wethers receiving cortisol and oestradiol in combination. Anterior pituitary tissue was collected at the end of the infusion period. Oestradiol increased (P<0.05) tissue concentrations of GnRH receptor and GnRH receptor mRNA. Although cortisol alone did not affect (P>0.05) basal concentrations of receptor or receptor mRNA, the magnitude of oestradiol-induced increase in GnRH receptor and GnRH receptor mRNA was significantly reduced in wethers receiving cortisol and oestradiol concurrently. Conversely, steady-state concentrations of mRNA encoding the LHbeta and FSHbeta subunits were increased (P<0.05) in wethers receiving cortisol. These observations demonstrate that stress-like concentrations of cortisol act in concert with oestradiol to suppress LH secretion. In addition, cortisol blocks oestradiol-dependent increase in pituitary tissue concentrations of GnRH receptor and GnRH receptor mRNA.  相似文献   

18.
IPL nude females present an absence of lactation with hypoprolactinemia. While males present a slight but significant decrease in serum testosterone and gonadotropins, females show normal values of estradiol, progesterone, LH and FSH during all estrus cycle stages. In this work, we observed that the postovariectomy rise of LH and FSH was significantly lower in the IPL nude females. We studied also the effect of acute (1 injection of 25 micrograms/rat E2Bz) or long-term (E2Bz capsule for 8 days) estradiol benzoate (E2Bz) treatment, with or without progesterone injection (5 mg/rat) in ovariectomized (OVX) IPL and normal females. The sensitivity of gonadotropins to E2 negative feedback is decreased in the IPL nude rats, result in agreement with previous reports and which could be linked to both hypoprolactinemia and decreased beta-endorphin observed in the IPL nude rat. The responsiveness of LH to LHRH was also tested in OVX and OVX + E2Bz or OVX + E2B + P treated. In OVX females responsiveness of LH to LHRH was similar in IPL nude to that of normal females. However, LH responsiveness in acute and long-term steroid-treated OVX IPL nude was significantly depressed. Since the mechanism whereby PRL interacts with steroids to modify gonadotropin secretion is still unexplained, IPL nude rat could be a good model to study it.  相似文献   

19.
The objective of this study was to determine the efficacy of a progesterone-releasing intravaginal silastic device (Controlled Internal Drug Release: CIDR) for inducing ovulation in beef cows with persistent ovarian cysts. Fifteen cows with cysts and abnormal cycles for over 40 days were randomly assigned to receive either a single CIDR (CIDR group, n=9), or a CIDR containing no progesterone (blank CIDR) (BLANK group, n=6) for about 14 days. Determination of plasma progesterone levels at the beginning of CIDR treatment indicated 4 of 6 BLANK cows with non-luteinized cysts and 5 of 9 CIDR cows with non-luteinized cysts. In 5 of 6 BLANK cows, one follicular wave appeared and newly emerged dominant follicles increased in size up to 20 mm in diameter and persisted during the experiment, while one cow experienced estrus with spontaneous ovulation. In contrast, during CIDR treatment, 2 or 3 waves, in which dominant follicles were from 7 to 15 mm in diameter, appeared approximately at 7-day intervals. Within 3 days after CIDR removal, estrous behavior was detected followed by ovulation of the dominant follicle in the last wave. All CIDR cows resumed normal cyclicity with 2 follicular waves for over 2 months. Insertion of a CIDR caused a rapid increase of about 2 ng/mL in plasma progesterone. The levels were greater than 1.3 ng/mL until removal of a CIDR, then dropped under 0.3 ng/mL. Concentrations of plasma estradiol in BLANK cows increased during growth of the cystic follicles, with high levels greater than 10 pg/mL for over 10 days. In 4 of 5 cows with non-luteinized cysts, with high plasma estradiol on the day of CIDR insertion, CIDR treatment resulted in rapid decline of estradiol levels. During placement of the CIDR, estradiol levels showed no increase in the growth phase of a newly appeared dominant follicle. After CIDR removal, however, estradiol significantly increased associated with the growth of ovulatory follicles in all 9 cows. A transient increase in plasma FSH levels preceded detection of each follicular or cyst wave in both BLANK and CIDR cows. Pulse frequency and mean concentration of LH in cows with non-luteinized cysts showed values corresponding to those in normal follicular phase. However, throughout CIDR treatment, these parameters reduced to levels found in the normal luteal phase. In cows with luteinized cysts, parameters of LH secretion were as low as in the normal luteal phase before and during CIDR treatment, then increased significantly after CIDR removal. Present results indicate that treatment with CIDR proved effective in restoring ovulation and reestablishing normal cyclicity in beef donor cows with cysts persistent for a long period. The CIDR reduced and maintained LH secretion at normal luteal levels, thereby, inducing atresia of estrogen-active cysts and preventing formation of cysts from the newly emerged follicles.  相似文献   

20.
We compared the ability of estradiol and progesterone to modulate gonadotropin-releasing hormone (GnRH) and protein kinase C (PKC)-mediated luteinizing hormone (LH) secretion. Long-term (48 h) treatment of rat pituitary cells with 1 nM estradiol enhanced GnRH and phorbol ester (TPA)-stimulated LH secretion. This positive effect was facilitated by additional short-term (4 h) treatment with progesterone (100 nM). However, long-term progesterone treatment, which inhibited GnRH-stimulated LH secretion, did not influence TPA-stimulated gonadotropin release. These steroid actions occurred without an effect on the total amount of LH in the cell cultures (total LH = LH secreted + LH remaining in the cell) and neither the secretagogues nor the steroids altered total LH. Since GnRH or TPA-induced LH secretion depends on Ca2+ influx into the gonadotroph, we also analyzed the effects of estradiol and progesterone under physiological extracellular Ca2+ concentrations and in the absence of extracellular Ca2+. The steroids were able to influence GnRH or TPA-induced LH secretion under both conditions. However, when TPA was used as stimulus in Ca(2+)-deficient medium the relative changes induced by estradiol and progesterone were more pronounced, possibly indicating that the extracellular Ca(2+)-independent component of PKC-mediated LH secretion is more important for the regulation of the steroid effects. It is concluded that estradiol and progesterone might mediate their modulatory actions on GnRH-stimulated LH secretion via an influence on PKC. This effect can occur independently from de novo synthesis of LH and Ca2+ influx into gonadotrophs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号