首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Suppressors of the methyl methanesulfonate sensitivity of Saccharomyces cerevisiae diploids lacking the Srs2 helicase turned out to contain semidominant mutations in Rad5l, a homolog of the bacterial RecA protein. The nature of these mutations was determined by direct sequencing. The 26 mutations characterized were single base substitutions leading to amino acid replacements at 18 different sites. The great majority of these sites (75%) are conserved in the family of RecA-like proteins, and 10 of them affect sites corresponding to amino acids in RecA that are probably directly involved in ATP reactions, binding, and/or hydrolysis. Six mutations are in domains thought to be involved in interaction between monomers; they may also affect ATP reactions. By themselves, all the alleles confer a rad5l null phenotype. When heterozygous, however, they are, to varying degrees, negative semidominant for radiation sensitivity; presumably the mutant proteins are coassembled with wild-type Rad51 and poison the resulting nucleofilaments or recombination complexes. This negative effect is partially suppressed by an SRS2 deletion, which supports the hypothesis that Srs2 reverses recombination structures that contain either mutated proteins or numerous DNA lesions.  相似文献   

2.
We previously identified several rad51 gain-of-function alleles that partially suppress the requirement for RAD55 and RAD57 in DNA repair. To gain further insight into the mechanism of action of these alleles, we compared the activities of Rad51-V328A, Rad51-P339S and Rad51-I345T with wild-type Rad51, for DNA binding, filament stability, strand exchange and interaction with the antirecombinase helicase, Srs2. These alleles were chosen because they show the highest activity in suppression of ionizing radiation sensitivity of the rad57 mutant, and Val 328 and Ile 345 are conserved in the human Rad51 protein. All three mutant proteins exhibited higher affinity for single-stranded DNA (ssDNA) and showed more robust strand exchange activity with oligonucleotide substrates than wild-type Rad51, with the Rad51-I345T and Rad51-V328A proteins displaying higher activity than Rad51-P339S. However, the Srs2 antirecombinase was able to disrupt Rad51–ssDNA complexes formed with all the mutant proteins. In vivo, the rad51-I345T mutant strain exhibited high resistance to methyl methane sulfonate that was dependent on functional SRS2. These results suggest the Srs2 translocase is able to disrupt Rad51–ssDNA complexes at stalled replication forks, but in the absence of Srs2 the enhanced DNA binding of the Rad51-I345T protein is detrimental to cell survival.  相似文献   

3.
Mutants of the Saccharomyces cerevisiae SRS2 gene are hyperrecombinogenic and sensitive to genotoxic agents, and they exhibit a synthetic lethality with mutations that compromise DNA repair or other chromosomal processes. In addition, srs2 mutants fail to adapt or recover from DNA damage checkpoint-imposed G2/M arrest. These phenotypic consequences of ablating SRS2 function are effectively overcome by deleting genes of the RAD52 epistasis group that promote homologous recombination, implicating an untimely recombination as the underlying cause of the srs2 mutant phenotypes. TheSRS2-encodedproteinhasasingle-stranded (ss) DNA-dependent ATPase activity, a DNA helicase activity, and an ability to disassemble the Rad51-ssDNA nucleoprotein filament, which is the key catalytic intermediate in Rad51-mediated recombination reactions. To address the role of ATP hydrolysis in Srs2 protein function, we have constructed two mutant variants that are altered in the Walker type A sequence involved in the binding and hydrolysis of ATP. The srs2 K41A and srs2 K41R mutant proteins are both devoid of ATPase and helicase activities and the ability to displace Rad51 from ssDNA. Accordingly, yeast strains harboring these srs2 mutations are hyperrecombinogenic and sensitive to methylmethane sulfonate, and they become inviable upon introducing either the sgs1Delta or rad54Delta mutation. These results highlight the importance of the ATP hydrolysisfueled DNA motor activity in SRS2 functions.  相似文献   

4.
The Saccharomyces cerevisiae Srs2 protein is involved in DNA repair and recombination. In order to gain better insight into the roles of Srs2, we performed a screen to identify mutations that are synthetically lethal with an srs2 deletion. One of them is a mutated allele of the ULP1 gene that encodes a protease specifically cleaving Smt3-protein conjugates. This allele, ulp1-I615N, is responsible for an accumulation of Smt3-conjugated proteins. The mutant is unable to grow at 37 degrees C. At permissive temperatures, it still shows severe growth defects together with a strong hyperrecombination phenotype and is impaired in meiosis. Genetic interactions between ulp1 and mutations that affect different repair pathways indicated that the RAD51-dependent homologous recombination mechanism, but not excision resynthesis, translesion synthesis, or nonhomologous end-joining processes, is required for the viability of the mutant. Thus, both Srs2, believed to negatively control homologous recombination, and the process of recombination per se are essential for the viability of the ulp1 mutant. Upon replication, mutant cells accumulate single-stranded DNA interruptions. These structures are believed to generate different recombination intermediates. Some of them are fixed by recombination, and others require Srs2 to be reversed and fixed by an alternate pathway.  相似文献   

5.
G. T. Milne  T. Ho    D. T. Weaver 《Genetics》1995,139(3):1189-1199
RAD52 function is required for virtually all DNA double-strand break repair and recombination events in Saccharomyces cerevisiae. To gain greater insight into the mechanism of RAD52-mediated repair, we screened for genes that suppress partially active alleles of RAD52 when mutant or overexpressed. Described here is the isolation of a phenotypic null allele of SRS2 that suppressed multiple alleles of RAD52 (rad52B, rad52D, rad52-1 and KlRAD52) and RAD51 (KlRAD51) but failed to suppress either a rad52δ or a rad51δ. These results indicate that SRS2 antagonizes RAD51 and RAD52 function in recombinational repair. The mechanism of suppression of RAD52 alleles by srs2 is distinct from that which has been previously described for RAD51 overexpression, as both conditions were shown to act additively with respect to the rad52B allele. Furthermore, overexpression of either RAD52 or RAD51 enhanced the recombination-dependent sensitivity of an srs2δ RAD52 strain, suggesting that RAD52 and RAD51 positively influence recombinational repair mechanisms. Thus, RAD52-dependent recombinational repair is controlled both negatively and positively.  相似文献   

6.
In human cells, error-free repair of DNA double-strand breaks requires the DNA pairing and strand exchange activities of RAD51 recombinase. Activation of RAD51 recombination activities requires the assembly of RAD51 presynaptic filaments on the single-stranded DNA that forms at resected DSB ends. Mutations in proteins that control presynaptic filament assembly, such as BRCA2, and in RAD51 itself, are associated with human breast cancer. Here we describe the properties of two mutations in RAD51 protein that derive from human lung and kidney tumors, respectively. Sequence variants Q268P and Q272L both map to the DNA binding loop 2 (L2) region of RAD51, a motif that is involved in DNA binding and in the allosteric activation of ATP hydrolysis and DNA strand exchange activities. Both mutations alter the thermal stability, DNA binding, and ATPase properties of RAD51, however both variants retain intrinsic DNA strand exchange activity towards oligonucleotide substrates under optimized conditions. In contrast, both Q268P and Q272L variants exhibit drastically reduced DNA strand exchange activity in reaction mixtures containing long homologous ssDNA and dsDNA substrates and human RPA protein. Mixtures of wild-type and variant proteins also exhibit reduced DNA strand exchange activity, suggesting that heterozygous mutations could negatively affect DNA recombination and repair processes in vivo. Together, the findings of this study suggest that hypomorphic missense mutations in RAD51 protein could be drivers of genomic instability in cancer cells, and thereby contribute to the etiology of metastatic disease.  相似文献   

7.
The SRS2 (Suppressor of RAD Six screen mutant 2) gene encodes an ATP-dependent DNA helicase that regulates homologous recombination in Saccharomyces cerevisiae. Mutations in SRS2 result in a hyper-recombination phenotype, sensitivity to DNA damaging agents and synthetic lethality with mutations that affect DNA metabolism. Several of these phenotypes can be suppressed by inactivating genes of the RAD52 epistasis group that promote homologous recombination, implicating inappropriate recombination as the underlying cause of the mutant phenotype. Consistent with the genetic data, purified Srs2 strongly inhibits Rad51-mediated recombination reactions by disrupting the Rad51-ssDNA presynaptic filament. Srs2 interacts with Rad51 in the yeast two-hybrid assay and also in vitro. To investigate the functional relevance of the Srs2-Rad51 complex, we have generated srs2 truncation mutants that retain full ATPase and helicase activities, but differ in their ability to interact with Rad51. Importantly, the srs2 mutant proteins attenuated for Rad51 interaction are much less capable of Rad51 presynaptic filament disruption. An internal deletion in Srs2 likewise diminishes Rad51 interaction and anti-recombinase activity. We also present evidence that deleting the Srs2 C-terminus engenders a hyper-recombination phenotype. These results highlight the importance of Rad51 interaction in the anti-recombinase function of Srs2, and provide evidence that this Srs2 function can be uncoupled from its helicase activity.  相似文献   

8.
Cloning the RAD51 homologue of Schizosaccharomyces pombe.   总被引:14,自引:4,他引:10       下载免费PDF全文
The RAD51 gene of Saccharomyces cerevisiae encodes a RecA like protein, which is involved in the recombinational repair of double strand breaks. We have isolated the RAD51 homologue, rhp51+, of the distantly related yeast strain Schizosaccharomyces pombe by heterologous hybridization. DNA sequence analysis of the rhp51+ gene revealed an open reading frame of 365 amino acids. Comparison of the amino acid sequences of RAD51 and rhp51+ showed a high level of conservation: 69% identical amino acids. There are two Mlul sites in the upstream region which may be associated with cell cycle regulation of the rhp51+ gene. The rhp51+ null allele, constructed by disruption of the coding region, is extremely sensitive to X-rays, indicating that the rhp51+ gene, like RAD51, is also involved in the repair of X-ray damage. The structural and functional homology between rhp51+ and RAD51 suggests evolutionary conservation of certain steps in the recombinational repair pathway.  相似文献   

9.
In an effort to identify novel genes involved in recombination repair, we isolated fission yeast Schizosaccharomyces pombe mutants sensitive to methyl methanesulfonate (MMS) and a synthetic lethal with rad2. A gene that complements such mutations was isolated from the S. pombe genomic library, and subsequent analysis identified it as the fbh1 gene encoding the F-box DNA helicase, which is conserved in mammals but not conserved in Saccharomyces cerevisiae. An fbh1 deletion mutant is moderately sensitive to UV, MMS, and gamma rays. The rhp51 (RAD51 ortholog) mutation is epistatic to fbh1. fbh1 is essential for viability in stationary-phase cells and in the absence of either Srs2 or Rqh1 DNA helicase. In each case, lethality is suppressed by deletion of the recombination gene rhp57. These results suggested that fbh1 acts downstream of rhp51 and rhp57. Following UV irradiation or entry into the stationary phase, nuclear chromosomal domains of the fbh1Delta mutant shrank, and accumulation of some recombination intermediates was suggested by pulsed-field gel electrophoresis. Focus formation of Fbh1 protein was induced by treatment that damages DNA. Thus, the F-box DNA helicase appears to process toxic recombination intermediates, the formation of which is dependent on the function of Rhp51.  相似文献   

10.
In higher eukaryotes, RAD51 functions as an essential protein in homologous recombination and recombinational repair of DNA double strand breaks. During these processes, RAD51 catalyzes homologous pairing between single-stranded DNA and double-stranded DNA. Japonica cultivars of rice (Oryza sativa) encode two RAD51 proteins, RAD51A1 and RAD51A2, whereas only one RAD51 exists in yeast and mammals. However, the functional differences between RAD51A1 and RAD51A2 have not been elucidated, because their biochemical properties have not been characterized. In the present study, we purified RAD51A1 and RAD51A2, and found that RAD51A2 robustly promotes homologous pairing in vitro. RAD51A1 also possesses homologous-pairing activity, but it is only about 10% of the RAD51A2 activity. Both RAD51A1 and RAD51A2 bind to ssDNA and dsDNA, and their DNA binding strictly requires ATP, which modulates the polymer formation activities of RAD51A1 and RAD51A2. These findings suggest that although both RAD51A1 and RAD51A2 have the potential to catalyze homologous pairing, RAD51A2 may be the major recombinase in rice.  相似文献   

11.
12.
13.
The genes of the Saccharomyces cerevisiae RAD52 epistasis group are required for the repair of ionizing radiation-induced DNA damage. Three of these genes, RAD51, RAD55, and RAD57, have been identified as putative RecA homologs. An important feature of RecA is its ability to bind and hydrolyze ATP. RAD55 and RAD57 contain putative nucleotide binding motifs, and the importance of these motifs was determined by constructing site-directed mutations of the conserved lysine residue within the Walker A-box. Changing the lysine residue to arginine or alanine resulted in a mutant phenotype in DNA repair and sporulation for Rad55 but not for Rad57. Protein-protein interactions among Rad51, Rad55, and Rad57 were tested for by the two-hybrid system. Rad55 was shown to interact with Rad51 and Rad57 but not with itself. Additionally, no interaction between Rad57 and Rad51 or between Rad57 and itself was detected. Consistent with the hypothesis that Rad55 and Rad57 may function within, or stabilize, a protein complex, we found that RAD51 expressed from a high-copy-number plasmid suppresses the DNA repair defect of strains carrying rad55 and rad57 mutations. These data, in conjunction with other reports, demonstrate the importance of protein-protein interactions in the process of DNA repair.  相似文献   

14.
Rad51p is a eukaryotic homolog of RecA, the central homologous pairing and strand exchange protein in Escherichia coli. Rad54p belongs to the Swi2p/Snf2p family of DNA-stimulated ATPases. Both proteins are also important members of the RAD52 group which controls recombinational DNA damage repair of double-strand breaks and other DNA lesions in Saccharomyces cerevisiae. Here we demonstrate by genetic, molecular and biochemical criteria that Rad51 and Rad54 proteins interact. Strikingly, overexpression of Rad54p can functionally suppress the UV and methyl methanesulfonate sensitivity caused by a deletion of the RAD51 gene. However, no suppression was observed for the defects of rad51 cells in the repair of gamma-ray-induced DNA damage, mating type switching or spontaneous hetero-allelic recombination. This suppression is genetically dependent on the presence of two other members of the recombinational repair group, RAD55 and RAD57. Our data provide compelling evidence that Rad51 and Rad54 proteins interact in vivo and that this interaction is functionally important for recombinational DNA damage repair. As both proteins are conserved throughout evolution from yeasts to humans, a similar protein-protein interaction may be expected in other organisms.  相似文献   

15.
The human Rad51B protein is involved in the recombinational repair of damaged DNA. Chromosomal rearrangements of the Rad51B gene have been found in uterine leiomyoma patients, suggesting that the Rad51B gene suppresses tumorigenesis. In the present study, we found that the purified Rad51B protein bound to single-stranded DNA and double-stranded DNA in the presence of ATP and either Mg(2+) or Mn(2+) and hydrolyzed ATP in a DNA-dependent manner. When the synthetic Holliday junction was present along with the half-cruciform and double-stranded oligonucleotides, the Rad51B protein only bound to the synthetic Holliday junction, which mimics a key intermediate in homologous recombination. In contrast, the human Rad51 protein bound to all three DNA substrates with no obvious preference. Therefore, the Rad51B protein may have a specific function in Holliday junction processing in the homologous recombinational repair pathway in humans.  相似文献   

16.
The human breast cancer susceptibility gene BRCA2 is required for the regulation of RAD51-mediated homologous recombinational repair. BRCA2 interacts with RAD51 monomers, as well as nucleoprotein filaments, primarily though the conserved BRC motifs. The unrelated C-terminal region of BRCA2 also interacts with RAD51. Here we show that the BRCA2 C terminus interacts directly with RAD51 filaments, but not monomers, by binding an interface created by two adjacent RAD51 protomers. These interactions stabilize filaments so that they cannot be dissociated by association with BRC repeats. Interaction of the BRCA2 C terminus with the RAD51 filament causes a large movement of the flexible RAD51 N-terminal domain that is important in regulating filament dynamics. We suggest that interactions of the BRCA2 C-terminal region with RAD51 may facilitate efficient nucleation of RAD51 multimers on DNA and thereby stimulate recombination-mediated repair.  相似文献   

17.
Rad54 protein is a member of the Swi2/Snf2-like family of DNA-dependent/stimulated ATPases that dissociate and remodel protein complexes on dsDNA. Rad54 functions in the recombinational DNA repair (RAD52) pathway. Here we show that Rad54 protein dissociates Rad51 from nucleoprotein filaments formed on dsDNA. Addition of Rad54 protein overcomes inhibition of DNA strand exchange by Rad51 protein bound to substrate dsDNA. Species preference in the Rad51 dissociation and DNA strand exchange assays underlines the importance of specific Rad54-Rad51 protein interactions. Rad51 protein is unable to release dsDNA upon ATP hydrolysis, leaving it stuck on the heteroduplex DNA product after DNA strand exchange. We suggest that Rad54 protein is involved in the turnover of Rad51-dsDNA filaments.  相似文献   

18.
The breast cancer susceptibility protein BRCA2 is essential for recombinational DNA repair. BRCA2 specifically binds to RAD51 via eight BRC repeat motifs and delivers RAD51 to double-stranded DNA breaks. In this study, a mammalian two-hybrid assay and competitive ELISA showed that the interaction between BRC repeat 4 (BRC4) and RAD51 was strengthened by the substitution of a single BRC4 amino acid from valine to isoleucine (V1532I). However, the cancer-associated V1532F mutant exhibited very weak interaction with RAD51. This study used a comparative analysis of BRC4 between animal species to identify V1532 as an important residue that interacts with RAD51.  相似文献   

19.
RAD51 is important for restarting stalled replication forks and for repairing DNA double-strand breaks (DSBs) through a pathway called homology-directed repair (HDR). However, analysis of the consequences of specific RAD51 mutants has been difficult since they are toxic. Here we report on the dominant effects of two human RAD51 mutants defective for ATP binding (K133A) or ATP hydrolysis (K133R) expressed in mouse embryonic stem (ES) cells that also expressed normal mouse RAD51 from the other chromosome. These cells were defective for restarting stalled replication forks and repairing breaks. They were also hypersensitive to camptothecin, a genotoxin that generates breaks specifically at the replication fork. In addition, these cells exhibited a wide range of structural chromosomal changes that included multiple breakpoints within the same chromosome. Thus, ATP binding and hydrolysis are essential for chromosomal maintenance. Fusion of RAD51 to a fluorescent tag (enhanced green fluorescent protein [eGFP]) allowed visualization of these proteins at sites of replication and repair. We found very low levels of mutant protein present at these sites compared to normal protein, suggesting that low levels of mutant protein were sufficient for disruption of RAD51 activity and generation of chromosomal rearrangements.  相似文献   

20.
Yeast Rad51 promotes homologous pairing and strand exchange in vitro, but this activity is inefficient in the absence of the accessory proteins, RPA, Rad52, Rad54 and the Rad55-Rad57 heterodimer. A class of rad51 alleles was isolated that suppresses the requirement for RAD55 and RAD57 in DNA repair, but not the other accessory factors. Five of the six mutations isolated map to the region of Rad51 that by modeling with RecA corresponds to one of the DNA-binding sites. The other mutation is in the N-terminus of Rad51 in a domain implicated in protein-protein interactions and DNA binding. The Rad51-I345T mutant protein shows increased binding to single- and double-stranded DNA, and is proficient in displacement of replication protein A (RPA) from single-stranded DNA, suggesting that the normal function of Rad55-Rad57 is promotion and stabilization of Rad51-ssDNA complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号