首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloned DNA copies of double-stranded RNA segments 7, 8, and 9 of UK bovine rotavirus were nick-translated with [alpha-(32)P]ATP and hybridized to double-stranded RNA of various rotavirus strains which had been separated on long polyacrylamide gels and then transferred to o-aminophenylthioether paper. Specific hybridization of the UK calf clones to the separated RNA segments allowed the corresponding genes of four different rotaviruses to be rapidly determined.  相似文献   

2.
The structure of the 5'-termini has been investigated in mitochondrial DNA-coded poly(A)-containing RNA from HeLa cells. For this purpose, mitochondrial RNA isolated from cells labeled for 3 hours with [32P]orthophosphate in the presence of 20 microgram/ml camptothecin, and selected for poly(A) content by two passages through oligo(dT)-cellulose, was digested either with the nuclease P1 or with a mixture of RNases: the digestion products were then fractionated by two-dimensional electrophoresis. No "cap" structures were detected under conditions where the presence of such structures in one out of five to ten RNA molecules would have been recognized. It is, therefore, likely that "cap" structures are completely absent in HeLa cell mitochondrial poly(A)-containing RNA.  相似文献   

3.
P1-Adenosine 5'-P2-o-nitrobenzyl pyrophosphate (nbzlppA) has been synthesized as a substrate for T4 RNA ligase catalyzed 3'-phosphorylation. Incubation of oligoribonucleotides and nbzlppA with RNA ligase yielded oligoribonucleotides having a 3'-o-(o-nitrobenzyl) phosphate. Photochemical removal of the o-nitrobenzyl group provided the free 3'-phosphate. Using [P2-32P] nbzlppA, 3'-termini of oligoribonucleotides could be labelled with 32P. This reaction was applied to modify the 3'-end of donor molecules in joining reaction with RNA ligase. A trinucleotide U-A-G was converted to U-A-Gpnbzl and phosphorylated with polynucleotide kinase. pU-A-Gpnbzl was then joined to an acceptor trinucleotide A-U-G to yield A-U-G-U-A-Gp.  相似文献   

4.
5'-[32P]-labelled alkylating decathymidylate [4-(N-2-chloroethyl)N-methylaminobenzyl]-5'-phosphamide derivatives containing cholesterol or phenazinium residues at their 3'-termini were synthesized and used for alkylation of DNA within mammalian cells. The uptake of the cholesterol derivative by the cells and the extent of DNA alkylation are about two orders of magnitude higher than those of a similar alkylating derivative lacking the groups at the 3'-termini. The presence of the phenazinium residue at the 3'-terminus of the oligonucleotide reagent does not improve the reagent uptake by the cells but drastically increases the DNA modification efficiency.  相似文献   

5.
The major 5'-termini of human adenovirus type 2 early gene block 4 mRNA were sequenced. Poly(A+) polyribosomal RNA was isolated from Ad2 early infected cells, the 5'-terminal m7GPPP removed and the 5'-OH of the penultimate 2'-0-methylated nucleotide labeled with [gamma-32P]ATP using polynucleotide kinase. Ad2 E4 mRNA was purified by hybridization to the Ad2 EcoRI-C fragment and was digested with RNase T1. The resulting oligonucleotides were resolved by two dimensional paper electrophoresis-homochromatography. Four major and 3-4 minor 5'-terminal sequences were identified and characterized. The sequence of the 5'-terminal structures of the major four termini are: (1) m7GpppUmU(m)UUACACUGp, (2) m7GpppUmU(m)UACACUGp, (3) m7GpppUmU(m)ACACUGp, and (4) m7Gppp(m6)AmC(m)ACUGp. These major 5'-terminal sequences were aligned with nucleotide 325, 326, 327, and 329 from the righthand end of the known Ad2 DNA sequence (1) in the region mapped as the 5'-terminus of E4 mRNA by electron microscopy (2,3) and S1 nuclease-gel (4) mapping. Two potential ribosomal binding sites and an initiator codon were found at 40 to 65 nucleotides and about 80 nucleotides, respectively, from these heterogenous 5'-termini. Ad2 E4 major mRNA species appear to be unique since mRNA molecules initiate at a pyrimidine, perhaps by RNA polymerase stuttering, or they are products of an unusual type of RNA processing.  相似文献   

6.
In discontinuous polyoma DNA replication, the synthesis of Okazaki fragments is primed by RNA. During viral DNA synthesis in nuclei isolated from infected cells, 40% of the nascent short DNA fragments had the polarity of the leading strand which, in theory, could have been synthesized by a continuous mechanism. To rule out that the leading strand fragments were generated by degradation of nascent DNA, they were further characterized. DNA fragments from a segment of the genome which replication forks pass in only one direction were strand separated. The sizes of the fragments from both strands were similar, suggesting that one strand was not specifically degraded. Most important, however, the majority of the Okazaki fragments of both strands were linked to RNA at their 5' ends. For identification, the RNA was labeled at the 5' ends by [beta-32P]GTP, internally by [3H]CTP, [3H]GTP, and [3H]UTP, or at the 3' ends by 32P transfer from adjacent [32P]dTMP residues. All three kinds of labeling indicated that an equal proportion of DNA fragments from the two strands was linked to RNA primers.  相似文献   

7.
E1/U17 small nucleolar RNA (snoRNA) is a box H/ACA snoRNA. To detect protein bands that UV-crosslink to E1 RNA primarily at uridines, frog oocytes were injected with [alpha-32P]UTP-labeled E1 RNA and incubated, isolated nuclei were UV irradiated, and nuclear contents were digested with RNase A. Wild-type E1 RNA specifically UV-crosslinked to several protein bands. To identify E1 RNA sites involved in these interactions, we tested 21 E1 RNA mutants, each consisting of substitutions in a conserved sequence or structure. UV-crosslinking of different protein bands to E1 RNA depended on one of the following sets of conserved E1 RNA segments: two 5' end RNA sites; five 5' half RNA sites; two 3' half RNA sites; or 14 sites located throughout E1 RNA. Of these conserved E1 RNA sites, UV-crosslinking apparently depended on sequences at 11 sites, and structures at 2 sites. Gel electrophoresis with and without RNA competition detected protein bands that are not common to all of the box H/ACA snoRNAs.  相似文献   

8.
Bovine serum albumin conjugates of guanosine prepared by the periodate method was used as immunogen to elicit guanosine antibodies in rabbits. The specificities of the antibodies were studied by the inhibition of their binding to [3H]Gox-red, [32P]DNA and [3H]RNA by related non-radioactive compounds. A population of antibodies is specific to Gox-red with an average association constant of around 10(7) M-1 at 4 degrees C. There are a population of antibodies which bind to [32P]ssDNA and [3H]RNA specifically at guanosine residues. RNA binding antibodies were separated into two populations by affinity chromatography.  相似文献   

9.
The predominant rotavirus electropherotypes (e-types) during 17 epidemic seasons (1980 through 1997) in Finland were established, and representative virus isolates were studied by nucleotide sequencing and phylogenetic analysis. The virus isolates were either P[8]G1 or P[8]G4 types. The G1 and G4 strains formed one G1 lineage (VP7-G1-1) and one G4 lineage, respectively. Otherwise, they belonged to two P[8] lineages (VP4-P[8]-1 and -2) unrelated to their G types. Phylogenetic analysis of partial sequences of all 11 RNA segments obtained from the strains also revealed genetic diversity among gene segments other than those defining P and G types. With the exception of segments 1, 3, and 10, the sequences of the other segments could be assigned to 2 to 4 different genetic clusters. The results of this study suggest that, in addition to the RNA segments encoding VP4 and VP7, the other RNA segments may segregate independently as well. In total, the 9 predominant e-types represented 7 different RNA segment combinations when the phylogenetic clusters of their 11 genes were determined. The extensive genetic diversity and number of e-types among rotaviruses are best explained by frequent genetic reassortment.  相似文献   

10.
11.
12.
13.
Single-stranded RNA (ssRNA) was transcribed in vitro from inner-shell particles of human rotavirus strain Wa (HRV-Wa) and a bovine rotavirus (neonatal calf diarrhea virus [NCDV]) by virion-associated RNA polymerase activity. The ssRNA product consisted of 11 RNA segments which were separated by polyacrylamide gel electrophoresis. In vitro-transcribed 32P-labeled ssRNA was used to study the genetic relatedness between rotaviruses by annealing with genomic double-stranded RNA (dsRNA) of homologous or heterologous rotavirus. All segments of HRV-Wa ssRNA were hybridized with dsRNA of HRV TK80, collected from the feces of a gastroenteritis patient, at the level of 88 to 100% of the homologous reaction. On the other hand, no segments of ssRNA from HRV-Wa hybridized with dsRNA of NCDV or simian rotavirus (simian agent 11). Similarly, ssRNA from NCDV did not hybridize with dsRNA of HRV-Wa, but hybridized with dsRNA of simian agent 11 at the level of 30% of the homologous value.  相似文献   

14.
Radioactive alkylating 5'-[32P]-[4-(N-2-chlorethyl)N-methylaminobenzyl]-5'-phospham ide decadeoxyribothymidilate derivatives containing either free hydroxyl group (reagent I), hydrophobic cholesterol residue (reagent II) or polyaromatic phenazinium residue (reagent III) at 3'-termini were synthesized. The products were purified by HPLC and used for oligonucleotide-directed alkylating of DNA in isolated rat liver nuclei, Krebs-2 ascite carcinoma cells and L-929 murine fibroblasts. The uptake of reagent II by the cells was two orders of magnitude higher than that of reagent I and III. Intracellular alkylation of DNA by reagent II both in isolated nuclei and in living cells was about one order of magnitude higher than in the case of reagent I. The presence of phenazinium at 3'-termini of the reagent III leads to a sufficient increase of the alkylation extent compared to reagent I despite a quite low extent of its uptake by the cells.  相似文献   

15.
The Belgian rotavirus strain B4106, isolated from a child with gastroenteritis, was previously found to have VP7 (G3), VP4 (P[14]), and NSP4 (A genotype) genes closely related to those of lapine rotaviruses, suggesting a possible lapine origin or natural reassortment of strain B4106. To investigate the origin of this unusual strain, the gene sequences encoding VP1, VP2, VP3, VP6, NSP1, NSP2, NSP3, and NSP5/6 were also determined. To allow comparison to a lapine strain, the 11 double-stranded RNA segments of a European G3P[14] rabbit rotavirus strain 30/96 were also determined. The complete genome similarity between strains B4106 and 30/96 was 93.4% at the nucleotide level and 96.9% at the amino acid level. All 11 genome segments of strain B4106 were closely related to those of lapine rotaviruses and clustered with the lapine strains in phylogenetic analyses. In addition, sequence analyses of the NSP5 gene of strain B4106 revealed that the altered electrophoretic mobility of NSP5, resulting in a super-short pattern, was due to a gene rearrangement (head-to-tail partial duplication, combined with two short insertions and a deletion). Altogether, these findings confirm that a rotavirus strain with an entirely lapine genome complement was able to infect and cause severe disease in a human child.  相似文献   

16.
Guanylyl- and methyltransferases, isolated from purified vaccinia virus, were used to specifically label the 5′ ends of the genome RNAs of influenza A and B viruses. All eight segments were labeled with [α-32P]guanosine 5′-triphosphate or S-adenosyl[methyl-3H]methionine to form “cap” structures of the type m7G(5′)pppNm-, of which unmethylated (p)ppN- represents the original 5′ end. Further analyses indicated that m7G(5′)pppAm, m7G(5′)pppAmpGp, and m7G(5′)pppAmpGpUp were released from total and individual labeled RNA segments by digestion with nuclease P1, RNase T1, and RNase A, respectively. Consequently, the 5′-terminal sequences of most or all individual genome RNAs of influenza A and B viruses were deduced to be (p)ppApGpUp. The presence of identical sequences at the ends of RNA segments of both types of influenza viruses indicates that they have been specifically conserved during evolution.  相似文献   

17.
The methylation pattern of virion-associated high-molecular-weight RNA synthesized in vitro by purified vaccinia virus has been determined. Analysis of purified high-molecular-weight RNA synthesized with S-[methyl-3H]-adenosylmethionine and alpha[32P]UTP as precursors gave the following results. (i) Eessentially all molecules contained blocked and methylated structures of the type m7G(5')ppp(5')Gm and m7G(5')ppp(5')Am. (ii) There was no detectable methylation at internal sites. (iii) Under several different conditions of synthesis, the ratio of molecules containing m7G(5')ppp(5')Gm to those containing m7G(5')ppp(5')Am was imilar for both the virion-associated high-molecular-weight RNA and the virion-released 8-12S mRNA.  相似文献   

18.
Dibutyryl-cAMP-differentiated U937 cells incorporate alkyllyso-sn-glycero-3-[32P]phosphocholine (alkyllyso-[32P]GPC) into cellular alkylacyl-sn-glycero-3-phosphocholine (alkylacyl-GPC). Upon stimulation with fMet-Leu-Phe (fMLP), recombinant C5a, or phorbol 12-myristate 13-acetate (PMA), these cells produce alkylacyl-sn-glycero-3-[32P]phosphate (alkylacyl-[32P]GP). In the presence of ethanol (0.5%), alkylacyl-sn-glycero-3-[32P]phosphoethanol (alkylacyl-[32P]GPet) is also formed with a concomitant reduction in alkylacyl-[32P]GP accumulation. Because cellular ATP is not labeled with 32P, alkylacyl-[32P]GP and alkylacyl-[32P]GPet must be formed by phospholipase D (PLD)-catalyzed hydrolysis and transphosphatidylation, respectively. Activation by receptor agonists, but not by PMA, requires extracellular Ca2+ and is augmented by cytochalasin B pretreatment. Upon stimulation, dibutryl cAMP-differentiated U937 cells labeled with alkylacyl-[32P]GPC produce [32P]PO4 but not [32P]phosphocholine. Furthermore, when these cells were labeled in alkylacyl-GPC by incubation with [3H]alkyllyso-GPC and then stimulated, [3H]alkylacyl-glycerol ([3H]alkylacyl-Gro) is produced with a time-course similar to that of [32P]PO4 formation and coincident with the decline in alkylacyl-GP accumulation. These results demonstrate that alkylacyl-GP formed by PLD is dephosphorylated by phosphatidate phosphohydrolase to produce PO4 and alkylacyl-Gro. Upon stimulation with fMLP or C5a, U937 cells labeled in diacyl-sn-glycero-3-phosphocholine (diacyl-GPC) by incubation with [3H]acyllyso-GPC generate [3H]diacyl-GP, [3H]diacyl-GPEt, and [3H]diacyl-Gro with kinetics similar to those for the generation of the [3H]alkyl products. Thus, in differentiated U937 cells stimulated with receptor agonists, both alkylacyl-GPC and diacyl-GPC are sequentially metabolized by PLD and phosphatidate phosphohydrolase.  相似文献   

19.
G F Gerard 《Biochemistry》1981,20(2):256-265
The mechanism of action of the ribonuclease H (RNase H) activity associated with Moloney murine leukemia virus RNA-directed DNA polymerase (RNase H I) and the two-subunit (alpha beta) form of avian myeloblastosis virus DNA polymerase were compared by utilizing the model substrate (A)n.(dT)n and polyacrylamide gel electrophoresis in 7 M urea to analyze digestion products. Examination on 25% polyacrylamide gels revealed that a larger proportion of the RNase H I oligonucleotide products generated by limited digestion of [3H](A)(1100).(dT)n were acid insoluble (15-26 nucleotides long) than acid soluble (less than 15 nucleotides long), while the opposite was true for products generated by alpha beta RNase H. RNase H I was capable of attacking RNA in RNA.DNA in the 5' to 3' and 3' to 5' directions, as demonstrated by the use of [3H,3'- or 5'-32P](A)(380).(dT)n and cellulose--[3H](A)n.(dT)n. Both RNase H I and alpha beta RNase H degraded [3H]-(A)n.(dT)n with a partially processive mechanism, based upon classical substrate competition experiments and analyses of the kinetics of degradation of [3H,3'- or 5'-32P](A)(380).(dT)n. That is, both enzymes remain bound to a RNA.DNA substrate through a finite number of hydrolytic events but dissociate before the RNA is completely degraded. Both RNase H I and alpha beta RNase H were capable of degrading [14C](A)n in [3H](C)n-[14C](A)n-[32P](dA)n.(dT)n, suggesting that retroviral RNase H is capable of removing the tRNA primer at the 5' terminus of minus strand DNA at the appropriate time during retroviral DNA synthesis in vitro.  相似文献   

20.
N Sasakawa  T Nakaki  R Kato 《FEBS letters》1990,261(2):378-380
When [3H]inositol-prelabeled cultured bovine adrenal chromaffin cells were stimulated with nicotine (10 microM), a large and transient increase in [3H]inositol pentakisphosphate (InsP5) accumulation was observed. The accumulation reached the maximum level at 15 s, then declined to the basal level at 2 min. Nicotine also induced [3H]inositol tetrakisphosphate (InsP4) and [3H]inositol hexakisphosphate (InsP6) accumulation with a slower time course and a lesser magnitude than [3H]InsP5. The peaks of [3H]InsP4, [3H]InsP5 and [3H]InsP6 coincided with those of 32P radioactivity, when cells were doubly labeled with [3H]inositol and inorganic 32P. These results suggest that inositol pentakisphosphate is rapidly increased by nicotine, a cholinergic agonist, in cultured adrenal chromaffin cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号