首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entamoeba histolytica represents one of the leading causes of parasitic death worldwide. Although identified as the causative agent of amebiasis since 1875, the molecular mechanisms by which the parasite causes disease are still not fully understood. Studying Entamoeba reveals insights into a eukaryotic cell that differs in many ways from better-studied model organisms. Thus, much can be learned from this protozoan parasite on evolution, cell biology, and RNA biology. In this review we discuss selected research highlights in Entamoeba research and focus on the development of molecular biological techniques to study this pathogen. We end by highlighting some of the many questions that remain to be answered in order to fully understand this important human pathogen.  相似文献   

2.
Few organisms are more aptly named than Entamoeba histolytica, an intestinal protozoan parasite that can lyse and destroy human tissue. Within the past four years, new models of E. histolytica infection have begun to illuminate how amoebic trophozoites cause intestinal disease and liver abscess, and have expanded our understanding of the remarkable killing ability of this parasite. Here, I summarize recent work on the interactions between E. histolytica and human intestine, and between E. histolytica and hepatocytes, and discuss what these studies tell us about the role of inflammation and programmed cell death in the pathogenesis of amoebiasis.  相似文献   

3.
During the past few years, the introduction of DNA-mediated gene transfer into parasite research has permitted subtle studies on fundamental aspects of parasite biology. In this paper, Egbert Tannich describes the recent breakthrough of successful Entamoeba histolytica transfection, and the subsequent developments in this field.  相似文献   

4.
The protozoan parasite Entamoeba histolytica is the causative agent of amoebic dysentery. It is prevalent in developing countries that cannot prevent its fecal-oral spread and ranks second in worldwide causes of morbidity by parasitic infection. Improvements in sanitation would help curb disease spread. However, a lack of significant progress in this area has resulted in the need for a better understanding of the molecular and cellular biology of pathogenesis in order to design novel methods of disease treatment and prevention. Recent insight into the cellular mechanisms regulating virulence of E. histolytica has indicated that processes such as endocytosis, secretion, host cell adhesion and encystation play major roles in the infectious process. This review focuses on components of the molecular machinery that govern these cellular processes and their role in virulence, and discusses how an understanding of this might reveal opportunities to interfere with E. histolytica infection.  相似文献   

5.
Entamoeba histolytica is a protozoan intestinal parasite that causes amoebic colitis and amoebic liver abscess. To identify virulence factors of E. histolytica, we first defined the phenotypes of two E. histolytica strains, HM-1:IMSS, the prototype virulent strain, and E. histolytica Rahman, a strain that was reportedly less virulent than HM-1:IMSS. We found that compared with HM-1:IMSS, Rahman has a defect in erythrophagocytosis and the ability to cause amoebic colitis in human colonic xenografts. We used differential in-gel 2D electrophoresis to compare the proteome of Rahman and HM-1:IMSS, and identified six proteins that were differentially expressed above a fivefold level between the two organisms. These included two proteins with antioxidative properties (peroxiredoxin and superoxide dismutase), and three proteins of unknown function, grainin 1, grainin 2 and a protein containing a LIM-domain. Overexpression of peroxiredoxin in Rahman rendered the transgenic trophozoites more resistant to killing by H2O2 in vitro, and infection with Rahman trophozoites expressing higher levels of peroxiredoxin was associated with higher levels of intestinal inflammation in human colonic xenografts, and more severe disease based on histology. In contrast, higher levels of grainin appear to be associated with a reduced virulence phenotype, and E. histolytica HM-1:IMSS trophozoites infecting human intestinal xenografts show marked decreases in grainin expression. Our data indicate that there are definable molecular differences between Rahman and HM-1:IMSS that may explain the phenotypic differences, and identify peroxiredoxin as an important component of virulence in amoebic colitis.  相似文献   

6.
Entamoeba histolytica and Entamoeba dispar are two morphologically indistinguishable species that are found in the human gut. Of the two, E. histolytica is considered to be pathogenic while E. dispar is nonpathogenic. To generate molecular probes to detect and distinguish between the two species, we utilized repeat sequences present in Entamoeba genome. We have developed probes and primers from rDNA episomes, and unidentified Entamoeba EST1 repeat for this purpose, and used them for dot blot hybridization and PCR amplification. To investigate the possible existence of invasive and noninvasive strains of E. histolytica, the ability to differentiate individual isolates is necessary. For this purpose, we have utilized a modification of the AFLP procedure called 'Transposon display,' which generates and displays large number of genomic bands associated with a transposon. We have used the abundant retrotransposon, EhSINE1, for this purpose,and demonstrated its potential as a marker to study strain variation in E. histolytica. This technique could suitably be employed in carrying out significant molecular epidemiological studies and large-scale typing of this parasite.  相似文献   

7.
The ribosomal RNA genes of the protozoan parasite Entamoeba histolytica are highly repeated and display restriction fragment length polymorphism. Using a set of four DNA probes spanning the coding region and part of the flanking region of the E. histolytica ribosomal RNA genes, an analysis of the DNA bands generated by EcoRI digestion of Entamoeba DNA is presented. This analysis included five strains of E. histolytica, four strains of E. moshkovskii, and one strain each of E. invadens and E. terrapinae. No common bands were observed between E. histolytica and the other Entamoeba. Within E. histolytica, two bands were conserved in all strains while the others were polymorphic. Detailed analysis of DNA from independently isolated clones of the strain HM-1:IMSS of E. histolytica showed two bands to be highly polymorphic. Of these, the 4.4-kb band of clone 6 was further analyzed. Polymorphism in this band could even be demonstrated in cells of the same clone. Restriction enzyme analysis of this DNA band from two clones of HM-1:IMSS showed that the polymorphism may be due to variable numbers of DraI repeat units present in this DNA stretch.  相似文献   

8.
Coevolutionary interactions between host and parasite genotypes   总被引:5,自引:0,他引:5  
More than 20 years after Dawkins introduced the concept of "extended phenotype" (i.e. phenotypes of hosts and parasites result from interactions between the two genomes) and although this idea has now reached contemporary textbooks of evolutionary biology, most studies of the evolution of host-parasite systems still focus solely on either the host or the parasite, neglecting the role of the other partner. It is important to consider that host and parasite genotypes share control of the epidemiological parameters of their relationship. Moreover, not only the traits of the infection but also the genetic correlations among these and other traits that determine fitness might be controlled by interactions between host and parasite genotypes.  相似文献   

9.
Entamoeba histolytica, an early branching eukaryote, is the etiologic agent of amebiasis. Calcium plays a pivotal role in the pathogenesis of amebiasis by modulating the cytopathic properties of the parasite. However, the mechanistic role of Ca(2+) and calcium-binding proteins in the pathogenesis of E. histolytica remains poorly understood. We had previously characterized a novel calcium-binding protein (EhCaBP1) from E. histolytica. Here, we report the identification and partial characterization of an isoform of this protein, EhCaBP2. Both EhCaBPs have four canonical EF-hand Ca(2+) binding domains. The two isoforms are encoded by genes of the same size (402 bp). Comparison between the two genes showed an overall identity of 79% at the nucleotide sequence level. This identity dropped to 40% in the 75-nucleotide central linker region between the second and third Ca(2+) binding domains. Both of these genes are single copy, as revealed by Southern hybridization. Analysis of the available E. histolytica genome sequence data suggested that the two genes are non-allelic. Homology-based structural modeling showed that the major differences between the two EhCaBPs lie in the central linker region, normally involved in binding target molecules. A number of studies indicated that EhCaBP1 and EhCaBP2 are functionally different. They bind different sets of E. histolytica proteins in a Ca(2+)-dependent manner. Activation of endogenous kinase was also found to be unique for the two proteins and the Ca(2+) concentration required for their optimal functionality was also different. In addition, a 12-mer peptide was identified from a random peptide library that could differentially bind the two proteins. Our data suggest that EhCaBP2 is a new member of a class of E. histolytica calcium-binding proteins involved in a novel calcium signal transduction pathway.  相似文献   

10.
Drug resistance in protozoan parasites has been emerging in the past decade as an obstacle to their control. Amoebiasis, caused by Entamoeba histolytica, is a worldwide disease that provokes high rates of morbidity and mortality. Reports of failed drug treatment and differences in drug susceptibilities among E. histolytica strains probably herald the development of drug resistance in this parasite. In this review, Esther Orozco and co-workers summarize recent progress on the elucidation of physiological and molecular evidence of multidrug resistance in this parasite.  相似文献   

11.
12.
It is generally accepted that a majority of individuals infected by Entamoeba histolytica do not develop symptomatic disease. However, the parasite and the host factors contributing to the development of the disease, remain undetermined. It is also unclear why certain individuals develop extra-intestinal amebiasis without exhibiting apparent intestinal symptoms. An outbreak of amebic liver abscess in Tbilisi, Georgia in 1998-1999 suggested that the causative E. histolytica strain had an unusual propensity for extra-intestinal spread. To correlate the genetic differences with pathogenic potential of the parasite, we have examined the SREHP gene polymorphisms among Georgian E. histolytica isolates. Comparison of polymorphic patterns revealed the presence of several different genotypes of E. histolytica, thus preventing an association of a single genotype with hepatic disease, but supporting the previous finding of extensive genetic diversity among E. histolytica isolates from the same geographic origin.  相似文献   

13.
Our knowledge of many aspects of the molecular biology of animal parasitic nematodes has rapidly expanded in recent years but the classical genetic analysis of this group of organisms has yet to emerge as a viable discipline. For example, it is not possible to routinely perform crosses between single males and females to examine the genetic basis of even simple phenotypes such as anthelmintic resistance. This has meant that the function of many cloned parasite genes can only be inferred from sequence comparison with genes from other organisms where the function is known, or by correlation of DNA polymorphisms linked to the gene with phenotypic differences between strains or individuals. In the absence of classical genetic techniques, a molecular solution is to transform a suitable host with the gene of interest, but what defines a suitable host? Here, Warwick Grant describes recent work that aims to provide such a host.  相似文献   

14.
The recent publication of the protozoan parasite Entamoeba histolytica genome provides new insights into eukaryotic evolution, the role of lateral gene transfer in amebic biology and the adaptations required for eukaryotes that reside within the human intestine.  相似文献   

15.
Burgess K  Burchmore R 《Parasitology》2012,139(9):1119-1130
Proteomes are complex and dynamic entities that are still poorly understood, but the application of proteomic technologies has become invaluable in many areas of biology, including parasitology. These technologies can be exploited to identify proteins in both complex or relatively simple samples, that formerly could only be characterized by targeted approaches such as Western blotting. Quantitative proteomic approaches can reveal modulations in protein expression that accompany phenotypes of interest. Proteomic approaches have been exploited to understand some of the molecular basis for host:parasite interactions and to elucidate phenotypes such as virulence, antigenicity and drug resistance. Many of the same technologies can also be more easily applied to targeted sub-proteomes. Examples from several studies on pathogen proteomes and sub-proteomes, from bacteria to helminths, are presented to illustrate the potential and limitations of proteomic technologies.  相似文献   

16.
The cyst of Entamoeba histolytica is responsible for amebiasis infection. However, no axenic in vitro system exists that promotes mass encystation for studying this process of this human-infecting parasite. Cyst-like structures of E. histolytica obtained in this work were induced using TYI-S-33 media in combination with enterobacterias Escherichia coli and Enterococcus faecalis conditioned media, high CO2 tension and histamine. Cyst-like structures showed the same characteristics of a typical E. histolytica cyst: aggregation, resistance to 0.15% sarcosyl for 10 min, high signal of fluorescence under UV light when stained with 10% calcofluor M2r and the surface topology showed a wrinkled wall. In addition these structures are multinucleated with condensed chromatin attached to nuclear membrane, contain big vacuoles and ribonucleoproteic helices in the cytoplasm and also present a thin cell wall. Last all characteristics are all the same as a typical of E. histolytica cyst.  相似文献   

17.
18.
The parasite Entamoeba histolytica is a causative agent of dysentery and liver abscesses. Found predominantly in developing countries, this parasitic infection is responsible for significant morbidity and mortality. We have developed a genomic DNA microarray for E. histolytica. The array composed of 11,328 clones contains >2000 unique genes and was utilized for expression profiling and comparative genomic hybridizations of Entamoeba strains. We present a synopsis of our results to date and potential future applications of microarray technology for the study of Entamoeba biology.  相似文献   

19.
Genome sequencing of the protistan parasite Entamoeba histolytica HM-1:IMSS revealed that almost all the tRNA genes are organized into tandem arrays that make up over 10% of the genome. The 25 distinct array units contain up to 5 tRNA genes each and some also encode the 5S RNA. Between adjacent genes in array units are complex short tandem repeats (STRs) resembling microsatellites. To investigate the origins and evolution of this unique gene organization, we have undertaken a genome survey to determine the array unit organization in 4 other species of Entamoeba-Entamoeba dispar, Entamoeba moshkovskii, Entamoeba terrapinae, and Entamoeba invadens-and have explored the STR structure in other isolates of E. histolytica. The genome surveys revealed that E. dispar has the same array unit organization as E. histolytica, including the presence and numerical variation of STRs between adjacent genes. However, the individual repeat sequences are completely different to those in E. histolytica. All other species of Entamoeba studied also have tandem arrays of clustered tRNA genes, but the gene composition of the array units often differs from that in E. histolytica/E. dispar. None of the other species' arrays exhibit the complex STRs between adjacent genes although simple tandem duplications are occasionally seen. The degree of similarity in organization reflects the phylogenetic relationships among the species studied. Within individual isolates of E. histolytica most copies of the array unit are uniform in sequence with only minor variation in the number and organization of the STRs. Between isolates, however, substantial differences in STR number and organization can exist although the individual repeat sequences tend to be conserved. The origin of this unique gene organization in the genus Entamoeba clearly predates the common ancestor of the species investigated to date and their function remains unclear.  相似文献   

20.
The varied organ tropisms and clinical presentations of infection by Entamoeba histolytica have stimulated interest in the role of parasite genetic diversity in virulence. We investigated genetic diversity among 54 E. histolytica isolates from Bangladesh by analyzing polymorphism in the serine-rich gene by nested PCR on DNA extracted from stool and liver aspirate pus. We detected both size and restriction site polymorphisms among the isolates within this endemic area. A combination of the nested PCR results and the AluI digestion of the PCR products examined yielded 25 distinct DNA banding patterns among the 42 stool isolates and an additional 9 distinct patterns among the 12 liver abscess isolates. Approximately half of the isolates had unique polymorphisms. Interestingly, the majority of E. histolytica from the liver had polymorphisms which were not present in intestinal isolates from the same geographic area. These data are consistent with the existence of genetic differences between E. histolytica which cause intestinal and those which cause hepatic disease. We conclude that there is genetic diversity within E. histolytica isolates from an endemic population as reflected in serine-rich E. histolytica protein gene polymorphism. The correlation of genetic differences with the pathogenic potential of E. histolytica strains and the implications of genetic diversity for the immunoprophylaxis of amebiasis require further study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号