首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
酿酒酵母乙醇耐受性机理研究进展   总被引:2,自引:0,他引:2  
酿酒酵母(Sacchromyces cerevisiae)一直是主要的生物乙醇和酿酒业发酵菌株, 具有发酵速度快、乙醇产量高特性。然而, 产物乙醇积累造成的毒性效应是限制乙醇产量的主要因素之一, 研究酿酒酵母乙醇耐受性为解决这一工业难题奠定了理论基础。本文从乙醇对酵母细胞生理、细胞结构和组分的影响, 以及酿酒酵母乙醇耐受性的遗传基础方面综述了酿酒酵母乙醇耐受性机理的研究进展。  相似文献   

2.
生物乙醇作为一种可再生的清洁能源,正在引起人们的广泛关注.酿酒酵母是乙醇生产中最常用的发酵菌株,但是乙醇耐受性往往成为限制酿酒酵母菌乙醇产量的重要因素.选育耐受高浓度乙醇的酵母菌株对于提高乙醇产率具有重要意义.然而传统的菌株改良方法具有育种周期长,突变方向不定等缺点.主要综述了近年来国内外对酿酒酵母菌耐受乙醇的分子生物学机理方面的研究成果,进而总结了提高酿酒酵母乙醇耐受性的基因工程、代谢工程.  相似文献   

3.
郭亭  梁达奉 《微生物学报》2008,35(2):0188-0192
采用休止细胞梯度生长法, 对工业糖蜜酿酒酵母(Saccharomyces cerevisiae)菌株进行高浓度酒精、高温和高渗透压, 以及糠醛毒性、苯酚毒性、乙酸毒性和抗生素G418毒性的耐受性分析。结果表明, 所测定的工业酵母菌株对这些逆境条件的耐受性有明显的差别; 其中AS2.1189和AS2.1190对测定的胁迫条件均表现出相对较好的耐受性; 396对乙酸毒性和G418毒性具有很好的耐受性; 2610对高温表现出较强的耐受性。  相似文献   

4.
选育高乙醇耐性的酿酒酵母菌株对提高燃料乙醇的发酵效率具有重要意义.锌指蛋白广泛存在于多种生物中,对基因的转录和翻译起重要的调节作用.利用人工设计的锌指蛋白可定向设计锌指序列及其排列顺序,实现对细胞内多个基因的全局调控.由于与环境胁迫反应相关的基因很多,因此可利用人工锌指蛋白技术获得耐受性提高的微生物重组菌.文中将人工锌指文库转入到酿酒酵母模式菌株S288c,选育了具有高乙醇耐受性的重组菌株M01,并分离了与乙醇耐受性提高相关的人工锌指蛋白表达载体pRS316ZFP-M01,转入工业酿酒酵母Sc4126,在含有不同浓度乙醇的平板上,工业酵母Sc4126的重组菌株表现出显著的耐受性提高.在高糖培养基(250 g/L)条件下进行乙醇发酵,发现重组菌的乙醇发酵效率明显快于野生型,发酵时间提前24 h,且发酵终点乙醇浓度提高6.3%.结果表明人工锌指文库能够提高酵母的乙醇耐受性,为构建发酵性能优良的酵母菌种奠定了基础.  相似文献   

5.
工业用糖蜜酿酒酵母菌株耐受性分析研究   总被引:2,自引:0,他引:2  
郭亭  梁达奉 《微生物学通报》2008,35(2):0188-0192
采用休止细胞梯度生长法,对工业糖蜜酿酒酵母(Saccharomyces cerevisiae)菌株进行高浓度酒精、高温和高渗透压,以及糠醛毒性、苯酚毒性、乙酸毒性和抗生素G418毒性的耐受性分析.结果表明,所测定的工业酵母菌株对这些逆境条件的耐受性有明显的差别;其中AS2.1189和AS2.1190对测定的胁迫条件均表现出相对较好的耐受性;396对乙酸毒性和G418毒性具有很好的耐受性;2610对高温表现出较强的耐受性.  相似文献   

6.
燃料乙醇发酵过程中酿酒酵母细胞活性被高浓度乙醇严重抑制而导致发酵提前终止,生产强度严重降低,因此构建同时具有高耐受性、高发酵性能的菌株一直是发酵工业追求的目标。选取酿酒酵母细胞形态调节关键基因小GTP酶家族成员Rho1,构建易错PCR产物文库,以酿酒酵母S288c为出发菌株采取“富集-自然生长-复筛”的筛选策略,成功筛选得到两株乙醇胁迫耐受性与发酵性能均提高的突变株M2和M5。测序发现突变株过表达的Rho1序列出现了3~5个氨基酸的突变和大片段的缺失突变。以300 g/L起始葡萄糖进行乙醇发酵,72 h时,M2和M5的乙醇滴度比对照菌株分别提高了19.4%和22.3%,超高浓度乙醇发酵能力显著提高。本研究为利用蛋白定向进化方法改良酵母菌复杂表型提供了新的作用靶点。  相似文献   

7.
【目的】提高酿酒酵母的高耐温性,从而提高菌株在高温下的乙醇发酵性能。【方法】利用染色体整合过表达酿酒酵母液泡蛋白酶B编码基因PRB1。【结果】在41 °C高温条件下进行乙醇发酵,过表达PRB1基因的重组酿酒酵母菌株可在31 h内消耗全部的葡萄糖,而对照菌株在相同时间内仅消耗不到一半的葡萄糖。【结论】利用蛋白酶B基因过表达可构建耐高温酿酒酵母菌株,提高在高温条件下乙醇的发酵效率。  相似文献   

8.
由于乙醇耐性受多基因控制,因此需要从全基因组水平进行改造以期得到高乙醇耐受的突变体。文中分别使用紫外诱变、等离子体诱变及人工转录因子3种方法对工业酿酒酵母Sc4126进行改造,获得了乙醇耐性提高的突变体,并比较了3种方法的正突变率。人工转录因子文库转化的方法获得了最多数量的乙醇耐性突变体,高出紫外诱变和等离子体诱变方法1~2个数量级,且遗传稳定。研究结果表明,人工转录因子技术可以用于对工业酿酒酵母快速进行基因组工程改造。  相似文献   

9.
苯甲醛高耐受性酵母菌的选育   总被引:1,自引:0,他引:1  
梁新乐 《生物学杂志》2003,20(1):30-31,39
介绍一种经过长期诱导、驯化作用来选育耐性菌株的方法。通过固定化细胞的间歇补料培养方式和长期诱导、驯化后,筛选出8株具有较高苯甲醛耐受性的酿酒酵母菌株,其中菌株Sbht-35-23对苯甲醛的耐受性达到0.9%,并保持较高的稳定活性。采用这些具有较高耐性的酿酒酵母菌株生物合成L-苯基乙酰基甲醇(L-PAC),将有利于提高转化率。  相似文献   

10.
代谢工程与全基因组重组构建酿酒酵母抗逆高产乙醇菌株   总被引:1,自引:0,他引:1  
将酿酒酵母海藻糖代谢工程与全基因组重组技术相结合,改良工业酿酒酵母菌株的抗逆性和乙醇发酵性能。对来源于二倍体出发菌株Zd4的两株优良单倍体Z1和Z2菌株进行杂交获得基因组重组菌株Z12,并对Z1和Z2先进行(1)过表达海藻糖-6-磷酸合成酶基因 (TPS1) ,(2)敲除海藻糖水解酶基因 (ATH1), (3)同时过表达 TPS1和敲除ATH1, 经此三种基因工程操作后再进行杂交获得代谢工程菌株的全基因组重组菌株Z12ptps1、Z12 Δath1和Z12pTΔA。与亲株Zd4相比,Z12及结合代谢工程获得的菌株在高糖、高乙醇浓度与高温条件下生长与乙醇发酵性能都有不同程度的改进。对比研究结果表明:在高糖发酵条件下,同时过表达 TPS1和敲除ATH1 的双基因操作工程菌株胞内海藻糖积累、乙醇主发酵速率和乙醇产量相对于亲株的提高幅度要大于只过表达 TPS1,或敲除ATH1 的工程菌。结合了全基因组重组后获得的二倍体工程菌株Z12pTΔA,与原始出发菌株Zd4及重组子Z12相比,主发酵速率分别提高11.4%和6.3%,乙醇产量提高7.0%和4.1%,与其胞内海藻糖含量高于其它菌株、在胁迫条件下具有更强耐逆境能力相一致。结果证明,海藻糖代谢工程与杂交介导的全基因组重组相结合,是提高酿酒酵母抗逆生长与乙醇发酵性能的有效策略与技术途径。  相似文献   

11.
利用SPT3的定向进化提高工业酿酒酵母乙醇耐受性   总被引:1,自引:0,他引:1  
利用对转录因子的定向进化可对多基因控制的性状进行有效的代谢工程改造。本研究对酿酒酵母负责胁迫相关基因转录的SAGA复合体成分SPT3编码基因进行易错PCR随机突变,并研究了SPT3的定向进化对酿酒酵母乙醇耐性的影响。将SPT3的易错PCR产物连接改造的pYES2.0表达载体并转化酿酒酵母Saccharomyces cerevisiae4126,构建了突变体文库。通过筛选在高浓度乙醇中耐受性提高的突变株,获得了一株在10%(V/V)乙醇中生长较好的突变株M25。该突变株利用125g/L的葡萄糖进行乙醇发酵时,终点乙醇产量比对照菌株提高了11.7%。由此表明,SPT3是对酿酒酵母乙醇耐性进行代谢工程改造的一个重要的转录因子。  相似文献   

12.
Two Saccharomyces cerevisiae strains with different degrees of ethanol tolerance adapted differently to produced ethanol. Adaptation in the less ethanol-tolerant strain was high and resulted in a reduced formation of ethanol-induced respiratory deficient mutants and an increased ergosterol content of the cells. Adaptation in the more ethanol-tolerant strain was less pronounced. Journal of Industrial Microbiology & Biotechnology (2000) 24, 75–78. Received 22 June 1999/ Accepted in revised form 06 October 1999  相似文献   

13.
14.
以木质纤维素为原料生产乙醇,预处理是必需的环节,这一过程中不可避免产生了多种对微生物有抑制作用的化合物,这些抑制物主要有3大类:弱酸、呋喃醛类和酚类化合物。这些化合物影响后续乙醇发酵微生物酿酒酵母(Saccharomyces cerevisiae)的生长及发酵性能,降低了乙醇的得率和产量,是木质纤维素原料大规模生产乙醇的一个主要障碍。以下介绍了3类抑制物的形成及作用机制,并介绍了应对抑制物作用、提高酵母发酵能力的措施及研究进展,包括发酵前预处理原料脱毒、通过进化工程驯化菌种或通过对抑制物耐受性相关基因的代谢工程操作提高酿酒酵母耐受性,及通过发酵过程控制减少抑制物影响等。  相似文献   

15.
Aims: To isolate thermotolerant Saccharomyces cerevisiae with high‐energy‐pulse‐electron (HEPE) beam, to optimize the mutation strain fermentation conditions for ethanol production and to conduct a preliminary investigation into the thermotolerant mechanisms. Methods and Results: After HEPE beam radiation, the thermotolerant S. cerevisiae strain Y43 was obtained at 45°C. Moreover, the fermentation conditions of mutant Y43 were optimized by L33 orthogonal experiment. The optimal glucose content and initial pH for fermentation were 20% g l?1 and 4·5, respectively; peptone content was the most neglected important factor. Under this condition, ethanol production of Y43 was 83·1 g l?1 after fermentation for 48 h at 43°C, and ethanol yield was 0·42 g g?1, which was about 81·5% of the theoretical yield. The results also showed that the trehalose content and the expression of the genes MSN2, SSA3 and TPS1 in Y43 were higher than those in the original strain (YE0) under the same stress conditions. Conclusions: A genetically stable mutant strain with high ethanol yield under heat stress was obtained using HEPE. This mutant may be a suitable candidate for the industrial‐scale ethanol production. Significance and Impact of the Study: High‐energy‐pulse‐electron radiation is a new efficient technology in breeding micro‐organisms. The mutant obtained in this work has the advantages in industrial ethanol production under thermostress.  相似文献   

16.
AIMS: Recombinant Saccharomyces cerevisiae strains harbouring different levels of xylulokinase (XK) activity and effects of XK activity on utilization of xylulose were studied in batch and fed-batch cultures. METHODS AND RESULTS: The cloned xylulokinase gene (XKS1) from S. cerevisiae was expressed under the control of the glyceraldehyde 3-phosphate dehydrogenase promoter and terminator. Specific xylulose consumption rate was enhanced by the increased specific XK activity, resulting from the introduction of the XKS1 into S. cerevisiae. In batch and fed-batch cultivations, the recombinant strains resulted in twofold higher ethanol concentration and 5.3- to six-fold improvement in the ethanol production rate compared with the host strain S. cerevisiae. CONCLUSIONS: An effective conversion of xylulose to xylulose 5-phosphate catalysed by XK in S. cerevisiae was considered to be essential for the development of an efficient and accelerated ethanol fermentation process from xylulose. SIGNIFICANCE AND IMPACT OF THE STUDY: Overexpression of the XKS1 gene made xylulose fermentation process accelerated to produce ethanol through the pentose phosphate pathway.  相似文献   

17.
Thermal damage, high osmolarity, and ethanol toxicity in the yeast Saccharomyces cerevisiae limit titer and productivity in fermentation to produce ethanol. We show that long-term adaptive laboratory evolution at 39.5°C generates thermotolerant yeast strains, which increased ethanol yield and productivity by 10% and 70%, in 2% glucose fermentations. From these strains, which also tolerate elevated-osmolarity, we selected a stable one, namely a strain lacking chromosomal duplications. This strain (TTY23) showed reduced mitochondrial metabolism and high proton efflux, and therefore lower ethanol tolerance. This maladaptation was bolstered by reestablishing proton homeostasis through increasing fermentation pH from 5 to 6 and/or adding potassium to the media. This change allowed the TTY23 strain to produce 1.3–1.6 times more ethanol than the parental strain in fermentations at 40°C with glucose concentrations ~300 g/L. Furthermore, ethanol titers and productivities up to 93.1 and 3.87 g·L −1·hr −1 were obtained from fermentations with 200 g/L glucose in potassium-containing media at 40°C. Albeit the complexity of cellular responses to heat, ethanol, and high osmolarity, in this study we overcome such limitations by an inverse metabolic engineering approach.  相似文献   

18.
Biofilms are natural forms of cell immobilization in which microorganisms attach to solid supports. At ISU, we have developed plastic composite-supports (PCS) (agricultural material (soybean hulls or oat hulls), complex nutrients, and polypropylene) which stimulate biofilm formation and which supply nutrients to the attached microorganisms. Various PCS blends were initially evaluated in repeated-batch culture-tube fermentation with Saccharomyces cerevisiae (ATCC 24859) in low organic nitrogen medium. The selected PCS (40% soybean hull, 5% soybean flour, 5% yeast extract-salt and 50% polypropylene) was then used in continuous and repeated-batch fermentation in various media containing lowered nitrogen content with selected PCS. During continuous fermentation, S. cerevisiae demonstrated two to 10 times higher ethanol production in PCS bioreactors than polypropylene-alone support (PPS) control. S. cerevisiae produced 30 g L−1 ethanol on PCS with ammonium sulfate medium in repeated batch fermentation, whereas PPS-control produced 5 g L−1 ethanol. Overall, increased productivity in low cost medium can be achieved beyond conventional fermentations using this novel bioreactor design. Received 20 May 1997/ Accepted in revised form 29 August 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号