首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
enod40 is a plant gene that participates in the regulation of symbiotic interaction between leguminous plants and bacteria or fungi. Furthermore, it has been suggested to play a general role in non-symbiotic plant development. Although enod40 seems to have multiple functions, being present in many land plants, the molecular mechanisms of its activity are unclear; they may be determined though, by short peptides and/or RNA structures encoded in the enod40 genes. We utilized conserved RNA structures in enod40 sequences to search nucleotide sequence databases and identified a number of new enod40 homologues in plant species that belong to known, but also, to yet unknown enod40-containing plant families. RNA secondary structure predictions and comparative sequence analysis of enod40 RNAs allowed us to determine the most conserved structural features, present in all known enod40 genes. Remarkably, the topology and evolution of one of the conserved structural domains are similar to those of the expansion segments found in structural RNAs such as rRNAs, RNase P and SRP RNAs. Surprisingly, the enod40 RNA structural elements are much more stronger conserved than the encoded peptides. This finding suggests that some general functions of enod40 gene could be determined by the encoded RNA structure, whereas short peptides may be responsible for more diverse functions found only in certain plant families.  相似文献   

2.
3.
Analysis of mutations induced by carbon ions in Arabidopsis thaliana   总被引:3,自引:0,他引:3  
To investigate the nature of mutations induced by accelerated ions in higher plants, the effects of carbon-ion-irradiation were compared with those of electron-irradiation in Arabidopsis thaliana. Point-like mutations and rearrangements were induced at a similar frequency after carbon-ion-irradiation, whereas point-like mutations were more frequently induced after electron-irradiation. Sequence analysis revealed that carbon-ion-induced point-like mutations were mostly short deletions. In the case of rearrangements, deletions, inversions, insertions, and translocations were found. The estimated frequency of deletion induction was comparable to that of fast neutrons. Analysis of chromosome breakpoints revealed that carbon ions frequently deleted small regions around the breakpoints, whereas electron-irradiation often duplicated these regions. Moreover, for both types of radiation, broken ends with microhomologies were frequently rejoined. Results of the breakpoint and broken end analyses suggest that non-homologous end-joining (NHEJ) leads to the rejoining of double strand breaks (dsbs) after cells are exposed to both types of radiation, but the type of NHEJ that occurs as a result of damage is different. The results indicated that carbon-ion-induced mutations are most likely nulls and that the induced rearrangements may arise through a unique mechanism. These findings indicate that accelerated ions are a useful mutagen for both forward and reverse genetics for plants.  相似文献   

4.
Analysis of oxidative signalling induced by ozone in Arabidopsis thaliana   总被引:2,自引:0,他引:2  
We are using acute ozone as an elicitor of endogenous reactive oxygen species (ROS) to understand oxidative signalling in Arabidopsis. Temporal patterns of ROS following a 6 h exposure to 300 nL L(-1) of ozone in ozone-sensitive Wassilewskija (Ws-0) ecotype showed a biphasic ROS burst with a smaller peak at 4 h and a larger peak at 16 h. This was accompanied by a nitric oxide (NO) burst that peaked at 9 h. An analysis of antioxidant levels showed that both ascorbate (AsA) and glutathione (GSH) were at their lowest levels, when ROS levels were high in ozone-stressed plants. Whole genome expression profiling analysis at 1, 4, 8, 12 and 24 h after initiation of ozone treatment identified 371 differentially expressed genes. Early induction of proteolysis and hormone-responsive genes indicated that an oxidative cell death pathway was triggered rapidly. Down-regulation of genes involved in carbon utilization, energy pathways and signalling suggested an inefficient defense response. Comparisons with other large-scale expression profiling studies indicated some overlap between genes induced by ethylene and ozone, and a significant overlap between genes repressed by ozone and methyl jasmonate treatment. Further, analysis of cis elements in the promoters of ozone-responsive genes also supports the view that phytohormones play a significant role in ozone-induced cell death.  相似文献   

5.
Size is an important parameter in the characterization of organ morphology and function. To understand the mechanisms that control leaf size, we previously isolated a number of Arabidopsis thaliana mutants with altered leaf size. Because leaf morphogenesis depends on determinate cell proliferation, the size of a mature leaf is controlled by variation in cell size and number. Therefore, leaf-size mutants should be classified according to the effects of the mutations on the cell number and/or size. A group of mutants represented by angustifolia3/grf-interacting factor1 and aintegumenta exhibits an intriguing cellular phenotype termed compensation: when the leaf cell number is decreased due to the mutation, the leaf cell size increases, leading to compensation in leaf area. Several lines of genetic evidence suggest that compensation is probably not a result of the uncoupling of cell division from cell growth. Rather, the evidence suggests an organ-wide mechanism that coordinates cell proliferation with cell expansion during leaf development. Our results provide a key, novel concept that explains how leaf size is controlled at the organ level.  相似文献   

6.
Two partially reconstructed karyotypes (RK1 and RK2) of Arabidopsis thaliana have been established from a transformant, in which four structurally changed chromosomes (α, β, γ, and δ) were involved. Both karyotypes are composed of 12 chromosomes, 2n = 1¢¢+ 3¢¢+ 4¢¢+ 5¢¢+ a¢¢+ g¢¢ = 12 {2}n = {1}\prime \prime + {3}\prime \prime + {4}\prime \prime + {5}\prime \prime + \alpha \prime \prime + \gamma \prime \prime = {12} for RK1 and 2n = 3¢¢+ 4¢¢+ 5¢¢+ a¢¢+ b¢¢+ g¢¢ = 12 {2}n = {3}\prime \prime + {4}\prime \prime + {5}\prime \prime + \alpha \prime \prime + \beta \prime \prime + \gamma \prime \prime = {12} for RK2, and these chromosome constitutions were relatively stable at least for three generations. Pairing at meiosis was limited to the homologues (1, 3, 4, 5, α, β, or γ), and no pairing occurred among non-homologous chromosomes in both karyotypes. For minichromosome α (mini α), precocious separation at metaphase I was frequently observed in RK2, as found for other minichromosomes, but was rare in RK1. This stable paring of mini α was possibly caused by duplication of the terminal tip of chromosome 1 that is characteristic of RK1.  相似文献   

7.
Bai S  Li M  Yao T  Wang H  Zhang Y  Xiao L  Wang J  Zhang Z  Hu Y  Liu W  He Y 《Nitric oxide》2012,26(1):54-60
Nitric oxide (NO) participates in the regulation of diverse functions in plant cells. However, different NO concentrations may trigger different pathways during the plant development. At basal levels of NO, plants utilize the NO signaling transduction pathway to facilitate plant growth and development, whereas higher concentrations trigger programmed cell death (PCD). Our results show that NO lower than the levels causing PCD, but higher than the basal levels induce DNA damage in root cells in Arabidopsis as witnessed by a reduction in root growth, rather than cell death, since cells retain the capacity to differentiate root hairs. The decrease in meristematic cells and increase in DNA damage signals in roots in responses to NO are in a dose dependent manner. The restraint of root growth is due to cell cycle arrest at G1 phase which is caused by NO induced DNA damage, besides a second arrest at G2/M existed in NO supersensitive mutant cue1. The results indicate that NO restrain root growth via DNA damage induced cell cycle arrest.  相似文献   

8.
9.
10.
器官形状和大小的控制是一个基本的发育生物学过程, 受细胞分裂和细胞扩展的影响。到目前为止, 人们对植物器官形状和大小的调控机制知之甚少。本实验室前期研究发现了一个种子和器官大小的调控基因DA1, 其编码一个泛素受体。在拟南芥(Arabidopsis thaliana)中, DA1通过抑制细胞的分裂来限制种子和器官的大小。本研究通过激活标签的方法在da1-1突变体背景下筛选到一个叶子形状发生改变的半显性突变体(yuan1-1D)。yuan1-1D形成短而圆的叶片和短的叶柄, 细胞学分析显示, 叶片和叶柄变短的主要原因是细胞的长向扩展降低导致的。YUAN1编码一个含有PHD锌指结构域的蛋白。GFP-YUAN1融合蛋白定位在细胞核内。过量表达YUAN1基因导致叶片和叶柄变短。遗传学分析显示, YUAN1和DA1、ROT3以及ROT4在控制叶片形状和大小方面作用于不同的遗传途径中。因此, 本研究鉴定了一个新的控制器官形状和大小的基因YUAN1, 为阐明植物器官形状和大小调控的分子机制提供了重要线索。  相似文献   

11.
BACKGROUND AND AIMS: Estimates of the amount of nuclear DNA of Arabidopsis thaliana, known to be among the lowest within angiosperms, vary considerably. This study aimed to determine genome size of a range of accessions from throughout the entire Eurasian range of the species. METHODS: Twenty accessions from all over Europe and one from Japan were examined using flow cytometry. KEY RESULTS: Significant differences in mean C-values were detected over a 1.1-fold range. Mean haploid (1C) genome size was 0.215 pg (211 Mbp) for all analysed accessions. Two accessions were tetraploid. CONCLUSIONS: A closer investigation of the DNA fractions involved in intraspecific genome size differences in this experimentally accessible species may provide information on the factors involved in stability and evolution of genome sizes.  相似文献   

12.
13.
Biologically induced systemic acquired resistance in Arabidopsis thaliana   总被引:3,自引:2,他引:1  
Local infection with a necrotizing pathogen can render plants resistant to subsequent infection by normally virulent pathogens. A system for biological induction of such systemic acquired resistance (SAR) in Arabidopsis thaliana is reported. When plants were immunized by local inoculation of a single leaf with avirulent Pseudomonas syringae pv. tomato (Pst) carrying the avrRpt2 avirulence gene, after 2 days other leaves became resistant, as measured symptomatically and by in planta bacterial growth, to challenge with a virulent Pst strain lacking this avirulence gene. Resistance was systemic and protected the plants against infection by other virulent pathogens including P. syringae pv. maculicola. Low-dose inoculation induced a strong SAR and double immunizations did not increase the level of protection indicating that the response of only a few cells to the immunizing bacteria is required. SAR was not induced by the virulent strain of Pst lacking avrRpt2. However, experiments with the Arabidopsis RPS2 disease resistance gene mutant rps2-201, which does not exhibit a local hypersensitive response to Pst carrying the corresponding avirulence gene avrRpt2, indicate that a hypersensitive response contributes to, but is not essential for, the induction of SAR. Thus, avrRpt2 activates either a branching signal pathway or separate parallel pathways for induction of localized hypersensitive resistance and SAR, with downstream potentiation of the systemic response by the local response. Using this system for the biological induction of SAR in Arabidopsis, it should be possible to dissect the molecular genetics of SAR by the isolation of mutants affected in the production, transmission, perception and transduction of the systemic signal(s).  相似文献   

14.
The impact of homogalacturonans deficiency on the cell wall porosity of Arabidopsis thaliana QUA1 mutant was investigated using NMR measurements of protons mobility interpreted in terms of pore size variations at nanometer and micrometer scales. Isolation and purification of wild type and mutant stems and calli cell walls permitted to exacerbate the putative impact of the mutation on cellulose-hemicelluloses assembly in highly and poorly organised cell walls, respectively. NMR relaxation measurements of water and exchangeable biopolymer protons and self-diffusion processes of polyethylene glycol in walls informed about the porosity network density and heterogeneity. The role of pectins and proteins as well as the growth status of the cells on the wall porosity regulation are discussed.  相似文献   

15.
MscS-like proteins control plastid size and shape in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
BACKGROUND: Mechanosensitive (MS) ion channels provide a mechanism for the perception of mechanical stimuli such as sound, touch, and osmotic pressure. The bacterial MS ion channel MscS opens in response to increased membrane tension and serves to protect against cellular lysis during osmotic downshock. MscS-like proteins are found widely in bacterial and archaeal species and have also been identified in fission yeast and plants. None of the eukaryotic members of the family have yet been characterized. RESULTS: Here, we characterize two MscS-like (MSL) proteins from Arabidopsis thaliana, MSL2 and MSL3. MSL3 can rescue the osmotic-shock sensitivity of a bacterial mutant lacking MS-ion-channel activity, suggesting that it functions as a mechanosensitive ion channel. Arabidopsis plants harboring insertional mutations in both MSL3 and MSL2 show abnormalities in the size and shape of plastids, which are plant-specific endosymbiotic organelles responsible for photosynthesis, gravity perception, and numerous metabolic reactions. MSL2-GFP and MSL3-GFP are localized to discrete foci on the plastid envelope and colocalize with the plastid division protein AtMinE. CONCLUSIONS: Our data support a model wherein MSL2 and MSL3 control plastid size, shape, and perhaps division during normal plant development by altering ion flux in response to changes in membrane tension. We propose that MscS family members have evolved new roles in plants since the endosymbiotic event that gave rise to plastids.  相似文献   

16.
17.
Arabidopsis DNA hypomethylation mutation, ddm1 , results in a variety of developmental abnormalities by slowly inducing heritable lesions at unlinked loci. Here, late-flowering traits observed at high frequencies in independently-established ddm1 lines were genetically characterized. In all of the four late-flowering lines examined the traits were dominant and mapped to the same chromosomal region, which is close or possibly identical to the FWA locus. The ddm1 -induced phenotypic onsets are apparently not random mutation events, but specific to a group of genes, suggesting the underlying epigenetic mechanism. The DNA methylation mutant provide useful system for identifying epigenetically-regulated genes important for plant development.  相似文献   

18.
19.
The time of flowering is regulated by various environmental cues, and in some plant species, it is known to be affected by abiotic stresses. We investigated the effect of nutrient stress caused by an abrupt reduction of mineral nutrition on flowering of Arabidopsis thaliana. We used a hydroponic culture system that enabled us to precisely control nutrient levels. When plants were grown in full-strength nutrient solution for several weeks and then transferred to a diluted medium, the time from sowing to bud appearance was significantly shortened. This acceleration of flowering was more pronounced in short days than in long days, and stronger in the ecotype Landsberg erecta than in Columbia and San Feliu-2. The response was also affected by the age of plants at the beginning of nutrient stress and by the concentration of the diluted medium: earlier treatment and more diluted solutions strengthened the effect. Flowering was affected by nutrient stress, not by a change in the osmotic potential of the medium: addition of mannitol to a 1000-fold diluted solution had no effect on the promotion of flowering. When 3-week-old Landsberg erecta plants were exposed to 1000-fold diluted nutrient solution in an 8-h day length, flower bud appearance was strongly and reproducibly advanced by 10.8–12.8 d compared with control plants (which developed buds 41.1–46.2 d after sowing). This treatment can serve as an optimized protocol for future studies concerning physiological, molecular and ecological aspects of flower induction by nutrient stress in A. thaliana.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号