首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
缺氧诱导因子-2(hypoxia—inducible factor-2,HIF-2)是一种转录因子。其主要活性作用部位是HIF-2α亚基,与HIF-10L有高度同源性,但二者在基因调节中有不同的作用,HIF-2α能优先表达某些靶基因如EPO、IGF、VEGFR等,是近年来研究较热门的一种促血管新生因子。骨髓间充质干细胞(mesenchy—real stem cells,MSCs)向内皮细胞分化、促进血管新生及管腔形成在很大程度上取决于HIF-2α的调节作用,此调节过程主要依赖于VEGF/VEGFR信号途径。  相似文献   

3.
4.
5.
Impaired Ag-presenting function in dendritic cells (DCs) due to abnormal differentiation is an important mechanism of tumor escape from immune control. A major role for vascular endothelial growth factor (VEGF) and its receptors, VEGFR1/Flt-1 and VEGFR2/KDR/Flk-1, has been documented in hemopoietic development. To study the roles of each of these receptors in DC differentiation, we used an in vitro system of myeloid DC differentiation from murine embryonic stem cells. Exposure of wild-type, VEGFR1(-/-), or VEGFR2(-/-) embryonic stem cells to exogenous VEGF or the VEGFR1-specific ligand, placental growth factor, revealed distinct roles of VEGF receptors. VEGFR1 is the primary mediator of the VEGF inhibition of DC maturation, whereas VEGFR2 tyrosine kinase signaling is essential for early hemopoietic differentiation, but only marginally affects final DC maturation. SU5416, a VEGF receptor tyrosine kinase inhibitor, only partially rescued the mature DC phenotype in the presence of VEGF, suggesting the involvement of both tyrosine kinase-dependent and independent inhibitory mechanisms. VEGFR1 signaling was sufficient for blocking NF-kappaB activation in bone marrow hemopoietic progenitor cells. VEGF and placental growth factor affect the early stages of myeloid/DC differentiation. The data suggest that therapeutic strategies attempting to reverse the immunosuppressive effects of VEGF in cancer patients might be more effective if they specifically targeted VEGFR1.  相似文献   

6.
Bone marrow-derived cells are recruited to sites of ischemia, where they promote tissue vascularization. This response is dependent upon the expression of vascular endothelial growth factor (VEGF) receptor 1 (VEGFR1), which mediates cell migration in response to VEGF or placental growth factor (PLGF). In this study, we found that exposure of cultured mouse bone marrow-derived mesenchymal stromal cells (MSC) to hypoxia or an adenovirus encoding a constitutively active form of hypoxia-inducible factor 1 (HIF-1) induced VEGFR1 mRNA and protein expression and promoted ex vivo migration in response to VEGF or PLGF. MSC in which HIF-1 activity was inhibited by a dominant negative or RNA interference approach expressed markedly reduced levels of VEGFR1 and failed to migrate or activate AKT in response to VEGF or PLGF. Thus, loss-of-function and gain-of-function approaches demonstrated that HIF-1 activity is necessary and sufficient for basal and hypoxia-induced VEGFR1 expression in bone marrow-derived MSC.  相似文献   

7.
During early pregnancy, an environment of relative low oxygen tension is essential for normal embryonic and placental vasculature. In low-oxygen conditions, the hypoxic-inducible factor-1 (HIF-1), composed of alpha and beta subunits, controls the expression of a number of genes such as vascular endothelial growth factor (VEGF), a key angiogenic factor. The recent studies in some tumor cells have found that the labile component, HIF-1 alpha, is not only activated by hypoxia but also by peptides such as interleukin-1 (IL-1) in normoxia. In this article, we demonstrated that exposure of normal human cytotrophoblast cells to IL-1 beta stimulated the expression of HIF-1 alpha protein. Meanwhile, IL-1 beta also induced the secretion of VEGF in normal human cytotrophoblast cells. Our data indicated that IL-1 beta induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Moreover, treatment of cells with PD98059, an inhibitor of ERK1/2 signaling, inhibited the stimulation of HIF-1 alpha protein expression and VEGF secretion by IL-1 beta. These data indicate that, in normal human cytotrophoblast cells, IL-1 beta induces HIF- 1 alpha-mediated VEGF secretion and that IL-1 beta-stimulated ERK1/2 activation may be involved in this process.  相似文献   

8.
(?)-Epigallocatechin gallate (EGCG), the major constituent of green tea, inhibits the growth of colorectal cancer cells by inhibiting the activation of various types of receptor tyrosine kinases (RTKs). The RTK vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) axis induces tumor angiogenesis in colorectal cancer. This study examined the effects of EGCG on the activity of the VEGF/VEGFR axis and the expression of hypoxia-inducible factor (HIF)-1α, which promotes angiogenesis by elevating VEGF levels, in human colorectal cancer cells. Total and phosphorylated (i.e., activated) form (p-VEGFR-2) of VEGFR-2 proteins were overexpressed in a series of human colorectal cancer cell lines. Within 3 h, EGCG caused a decrease in the expression of HIF-1α protein and VEGF, HIF-1α, insulin-like growth factor (IGF)-1, IGF-2, epidermal growth factor (EGF), and heregulin mRNAs in SW837 colorectal cancer cells, which express a constitutively activated VEGF/VEGFR axis. A decrease was also observed in the expression of VEGFR-2, p-VEGFR-2, p-IGF-1 receptor, p-ERK, and p-Akt proteins within 6 h after EGCG treatment. Drinking EGCG significantly inhibited the growth of SW837 xenografts in nude mice, and this was associated with the inhibition of the expression and activation of VEGFR-2. The consumption of EGCG also inhibited activation of ERK and Akt, both of which are downstream signaling molecules of the VEGF/VEGFR axis, and reduced the expression of VEGF mRNA in xenografts. These findings suggest that EGCG may exert, at least in part, growth-inhibitory effects on colorectal cancer cells by inhibiting the activation of the VEGF/VEGFR axis through suppressing the expression of HIF-1α and several major growth factors. EGCG may therefore be useful in the chemoprevention and/or treatment of colorectal cancer.  相似文献   

9.
The differentiation, growth, and survival of endothelial cells (ECs) are regulated by multiple signalling pathways, such as vascular endothelial growth factors (VEGFs) and angiopoietins through their receptor tyrosine kinases, VEGF receptor (VEGFR) 2 and Tie2, respectively. Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)-beta family, have been implicated in the development and maintenance of vascular systems. However, their effects on EC proliferation remain to be elucidated. In the present study, we show that BMPs induce the proliferation and migration of mouse embryonic stem cell (ESC)-derived endothelial cells (MESECs) and human microvascular endothelial cells (HMECs). Addition of BMP-4 to culture induced significant proliferation and migration of both types of ECs. BMP-4 also increased the expression and phosphorylation of VEGFR2 and Tie2. These findings suggest that BMP signalling activates endothelium via activation of VEGF/VEGFR2 and Angiopoietin/Tie2 signalling.  相似文献   

10.
张厚斌  时开网  姚平 《生物磁学》2010,(12):2250-2252,2255
目的:研究胰腺癌组织中缺氧诱导因子1alpha(Hypoxia-inducible factor-1alpha,HIF-1α)、血管内皮生长因子(vascular endothelial growth factor,VEGF)和成纤维细胞生长因子(fibroblast growth factor,FGF)的表达并探讨其意义。方法:Western blot法检测22例胰腺癌及癌旁组织中HIF-1α、VEGF和FGF蛋白的表达,分析HIF-1α与VEGF、FGF之间的相关性以及与性别、年龄、肿瘤大小、淋巴结转移和TNM分期之间的关系。结果:HIF-1α、VEGF和FGF在胰腺癌组织中的蛋白表达水平明显高于胰腺癌周组织(P〈0.01),HIF-1α与VEGF、FGF之间的表达具有显著相关性(P〈0.01)。HIF-1α的表达与胰腺癌的TNM分期、肿瘤大小和淋巴结转移有关(P〈0.01),VEGF和FGF的表达与胰腺癌的肿瘤大小和淋巴结转移有关(P〈0.05)。结论:HIF-1α可以上调VEGF和FGF的表达,在胰腺癌的发生、发展中起着重要作用。  相似文献   

11.
H E Ryan  J Lo    R S Johnson 《The EMBO journal》1998,17(11):3005-3015
  相似文献   

12.
D Medici  BR Olsen 《PloS one》2012,7(8):e42913
Hemangiomas are tumors formed by hyper-proliferation of vascular endothelial cells. This is caused by elevated vascular endothelial growth factor (VEGF) signaling through VEGF receptor 2 (VEGFR2). Here we show that elevated VEGF levels produced by hemangioma endothelial cells are reduced by the mTOR inhibitor rapamycin. mTOR activates p70S6K, which controls translation of mRNA to generate proteins such as hypoxia inducible factor-1 (HIF-1). VEGF is a known HIF-1 target gene, and our data show that VEGF levels in hemangioma endothelial cells are reduced by HIF-1α siRNA. Over-expression of HIF-1α increases VEGF levels and endothelial cell proliferation. Furthermore, both rapamycin and HIF-1α siRNA reduce proliferation of hemangioma endothelial cells. These data suggest that mTOR and HIF-1 contribute to hemangioma endothelial cell proliferation by stimulating an autocrine loop of VEGF signaling. Furthermore, mTOR and HIF-1 may be therapeutic targets for the treatment of hemangiomas.  相似文献   

13.
Intermittent hypoxia (IH), the key property of obstructive sleep apnea (OSA), is closely associated with endothelial dysfunction. Endothelial-cell-specific molecule-1 (ESM-1, Endocan) is a novel, reported molecule linked to endothelial dysfunction. The aim of this study is to evaluate the effect of IH on ESM-1 expression and the role of ESM-1 in endothelial dysfunction. We found that serum concentration of ESM-1, inter-cellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) is significantly higher in patients with OSA than healthy volunteers (p < 0.01). The expression of ESM-1, hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) was significantly increased in human umbilical vein endothelial cells (HUVECs) by treated IH in a time-dependent manner. HIF-1α short hairpin RNA and vascular endothelial growth factor receptor (VEGFR) inhibitor inhibited the expression of ESM-1 in HUVECs. ICAM-1 and VCAM-1 expressions were significantly enhanced under IH status, accompanied by increased monocyte–endothelial cell adhesion rate ( p < 0.001). Accordingly, ESM-1 silencing decreased the expression of ICAM-1 and VCAM-1 in HUVECs, whereas ESM-1 treatment significantly enhanced ICAM-1 expression accompanied by increasing adhesion ability. ESM-1 is significantly upregulated by the HIF-1α/VEGF pathway under IH in endothelial cells, playing a critical role in enhancing adhesion between monocytes and endothelial cells, which might be a potential target for IH-induced endothelial dysfunction.  相似文献   

14.
15.
Xiao Z  Kong Y  Yang S  Li M  Wen J  Li L 《Cell research》2007,17(1):73-79
Neural stem cells (NSCs) constitute the cellular basis for embryonic brain development and neurogenesis. The process is regulated by NSC niche including neighbor cells such as vascular and glial cells. Since both vascular and glial cells secrete vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), we assessed the effect of VEGF and bFGF on NSC proliferation using nearly homogeneous NSCs that were differentiated from mouse embryonic stem cells. VEGF alone did not have any significant effect. When bFGF was added, however, VEGF stimulated NSC proliferation in a dose-dependent manner, and this stimulation was inhibited by ZM323881, a VEGF receptor (Flk-1)- specific inhibitor. Interestingly, ZM323881 also inhibited cell proliferation in the absence of exogenous VEGF, suggesting that VEGF autocrine plays a role in the proliferation of NSCs. The stimulatory effect of VEGF on NSC proliferation depends on bFGF, which is likely due to the fact that expression of Flk-1 was upregulated by bFGF via phosphorylation of ERK1/2. Collectively, this study may provide insight into the mechanisms by which microenvironmental niche signals regulate NSCs.  相似文献   

16.
The role of bone marrow (BM)-derived precursor cells in tumor angiogenesis is not known. We demonstrate here that tumor angiogenesis is associated with recruitment of hematopoietic and circulating endothelial precursor cells (CEPs). We used the angiogenic defective, tumor resistant Id-mutant mice to show that transplantation of wild-type BM or vascular endothelial growth factor (VEGF)-mobilized stem cells restore tumor angiogenesis and growth. We detected donor-derived CEPs throughout the neovessels of tumors and Matrigel-plugs in an Id1+/-Id3-/- host, which were associated with VEGF-receptor-1-positive (VEGFR1+) myeloid cells. The angiogenic defect in Id-mutant mice was due to impaired VEGF-driven mobilization of VEGFR2+ CEPs and impaired proliferation and incorporation of VEGFR1+ cells. Although targeting of either VEGFR1 or VEGFR2 alone partially blocks the growth of tumors, inhibition of both VEGFR1 and VEGFR2 was necessary to completely ablate tumor growth. These data demonstrate that recruitment of VEGF-responsive BM-derived precursors is necessary and sufficient for tumor angiogenesis and suggest new clinical strategies to block tumor growth.  相似文献   

17.
18.
19.
20.
Stimulation of human colon cancer cells with insulin-like growth factor 1 (IGF-1) induces expression of the VEGF gene, encoding vascular endothelial growth factor. In this article we demonstrate that exposure of HCT116 human colon carcinoma cells to IGF-1 induces the expression of HIF-1 alpha, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. In contrast to hypoxia, which induces HIF-1 alpha expression by inhibiting its ubiquitination and degradation, IGF-1 did not inhibit these processes, indicating an effect on HIF-1 alpha protein synthesis. IGF-1 stimulation of HIF-1 alpha protein and VEGF mRNA expression was inhibited by treating cells with inhibitors of phosphatidylinositol 3-kinase and MAP kinase signaling pathways. These inhibitors also blocked the IGF-1-induced phosphorylation of the translational regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E, thus providing a mechanism for the modulation of HIF-1 alpha protein synthesis. Forced expression of a constitutively active form of the MAP kinase kinase, MEK2, was sufficient to induce HIF-1 alpha protein and VEGF mRNA expression. Involvement of the MAP kinase pathway represents a novel mechanism for the induction of HIF-1 alpha protein expression in human cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号