首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 404 毫秒
1.
Purine nucleoside phosphorylase (PNP) from Cellulomonas sp., homotrimeric in the crystalline state, is also a trimer in solution. Other features of the enzyme are typical for "low molecular mass" PNPs, except for its unusual stability at pH 11. Purine bases, alpha-D-ribose-1-phosphate (R1P) and phosphate enhance the intrinsic fluorescence of Cellulomonas PNP, and hence form binary complexes and induce conformational changes of the protein that alter the microenvironment of tryptophan residue(s). The effect due to guanine (Gua) binding is much higher than those caused by other ligands, suggesting that the enzyme preferentially binds a fluorescent, most probably rare tautomeric anionic form of Gua, further shown by comparison of emission properties of the PNP/Gua complex with that of Gua anion and its N-methyl derivatives. Guanosine (Guo) and inosine (Ino) at 100 microM concentration show little and no effect, respectively, on enzyme intrinsic fluorescence, but their protective effect against thermal inactivation of the enzyme points to their forming weak binary complexes with PNP. Binding of Gua, hypoxanthine (Hx) and R1P to the trimeric enzyme is described by one dissociation constant, K(d)=0.46 microM for Gua, 3.0 microM for Hx, and 60 microM for R1P. The binding stoichiometry for Gua (and probably Hx) is three ligand molecules per enzyme trimer. Effects of phosphate on the enzyme intrinsic fluorescence are due not only to binding, but also to an increase in ionic strength, as shown by titration with KCl. When corrected for effects of ionic strength, titration data with phosphate are most consistent with one dissociation constant, K(d)=270 microM, but existence of a very weak binding site with K(d)>50 mM could not be unequivocally ruled out. Binding of Gua to the PNP/phosphate binary complex is weaker (K(d)=1.7 microM) than to the free enzyme (K(d)=0.46 microM), suggesting that phosphate helps release the purine base in the catalytic process of phosphorolysis.The results indicate that nonlinear kinetic plots of initial velocity, typical for PNPs, including Cellulomonas PNP, are not, as generally assumed, due to cooperative interaction between monomers forming the trimer, but to a more complex kinetic mechanism than hitherto considered.  相似文献   

2.
Qian YX  Song JJ 《动物学研究》2011,32(3):277-284
甜菜碱高半胱氨酸甲基转移酶(BHMT,EC2.1.1.5)催化甜菜碱的甲基转移给高半胱氨酸(Hcy),而分别生成二甲基甘氨酸和蛋氨酸。利用RT-PCR和SMART RACE的方法从鲈鱼(Lateolabrax japonicus)肝脏中克隆了BHMT全长cDNA。该序列全长1461bp,5'端非翻译区72bp,3'端非翻译区183bp,开放阅读框1206bp,可编码一个由401个氨基酸组成的蛋白质,该蛋白质相对分子质量为44.32kD,等电点为7.21。氨基酸序列分析表明,BHMT具有较高的保守性,鲈鱼BHMT与人、小鼠等9个物种的同源性为77%~93%,其中与黄鲈(Percaflavescens)同源性最高,为93%。用RT-PCR分析BHMT基因在10个组织中的表达结果表明,只有在肝、肠和肾中有较高的表达。RT-PCR和定量PCR表明,鲈鱼从盐度25的海水转入盐度12的海水后,肝、肠和肾BHMT基因表达量有增加,而将鲈鱼从盐度为25的海水转入盐度为29的海水后,肝、肠和肾的BHMT基因表达则减少。腹腔注射甜菜碱可增加鲈鱼BHMT基因在肝、肠和肾三个组织中的相对表达量。这些结果表明,甜菜碱可诱导鲈鱼BHMT...  相似文献   

3.
Betaine homocysteine S-methyltransferase (BHMT) is one of the two enzymes known to methylate homocysteine to generate methionine in the liver. It presents a Zn(2+) atom linked to three essential Cys residues. The crystal structure of rat liver BHMT has been solved at 2.5A resolution, using crystals with P2(1) symmetry and 45% solvent content in the cell. The asymmetric unit contains the whole functional tetramer showing point symmetry 222. The overall fold of the subunit consists mostly of a (alpha/beta)(8) barrel, as for human BHMT. From the end of the barrel, the polypeptide chain extends away and makes many interactions with a different subunit, forming tight dimers. The most remarkable structural feature of rat liver BHMT is the presence of a helix including residues 381-407, at the C terminus of the chain, which bind together the dimers AB to CD. A strong ion-pair and more than 60 hydrophobic interactions keep this helix stacked to the segment 316-349 from the opposite subunit. Moreover, the crystal structure of free rat liver BHMT clearly shows that Tyr160 is the fourth ligand coordinated to Zn, which is replaced by Hcy upon binding. Two residues essential for substrate recognition, Phe76 and Tyr77, are provided by a conformational change in a partially disordered loop (L2). The crucial role of these residues is highlighted by site-directed mutagenesis.  相似文献   

4.
Malate dehydrogenase from bovine adrenal cortex has been purified to homogeneity, using affinity chromatography on 2',5'-ADP-Sepharose 4B. The kinetic data do not contradict the consecutive mechanism of the reaction with the ordered addition of substrates: NADP binds first, then malate. The enzyme conformation initiated by NADP and malate binding is less thermostable. Malate dehydrogenase has intrinsic tryptophan fluorescence with the spectrum maximum at 335 +/- 1 nm, half-width of 50 +/- 1 nm and quantum yield of 0.08. The tryptophan residues belonging to class 1 (75%) and class 2 (25%) make the main contribution to the intrinsic fluorescence of malate. The binding of cofactors and substrates results in the quenching of enzyme fluorescence. The values of dissociation constants for malate dehydrogenase complexes with NADP (4 microM), with NADP . H (8 microM) and with pyruvate (2.5 mM) correlate with the corresponding values of Km. The shifts in pH of the medium induce changes in the fluorescence parameters which are probably related to conformational changes in the enzyme molecule. The changes in the fluorescence parameters correlate with the alterations of the malate dehydrogenase enzymatic activity.  相似文献   

5.
Human placental S-adenosylhomocysteine (AdoHcy) hydrolase was subjected to limited papain digestion. The multiple cleavage sites in the enzyme were identified to be Lys94-Ala95, Tyr100-Ala101, Glu243-Ile244, Met367-Ala368, Gln369-Ile370, and Gly382-Val383. Despite multiple cleavage sites in the backbone of the protein, the digested enzyme was able to maintain its quaternary structure and retain its full catalytic activity. The enzyme activity of the partially digested AdoHcy hydrolase was essentially identical to that of the native enzyme at several pH values. The thermal stabilities of the native and partially digested enzymes were only slightly different at all temperatures tested. The stability of both native and partially digested enzymes were examined in guanidine hydrochloride and equilibrium unfolding transitions were monitored by CD spectroscopy and tryptophan fluorescence spectroscopy. The results of these experiments can be summarized as follows: (1) CD spectroscopic analysis showed that the overall secondary and tertiary structures of the partially digested enzyme are essentially identical with those of the native enzyme; and (2) tryptophan fluorescence spectroscopic analysis indicated that there are small differences in the environments of surface-exposed tryptophan residues between the partially digested enzyme and the native enzyme under unfolding conditions. The differences in the free energy of unfolding, delta(delta Gu) [delta Gu(native)-delta Gu(digested)], is approximately 1.3 kcal/mol. When NAD+ was removed from the partially digested enzyme, the secondary and tertiary structures of the apo form of the digested AdoHcy hydrolase were completely lost and the enzymatic activity could not be recovered by incubation with excess NAD+. These results suggest that AdoHcy hydrolase exists as a very compact enzyme with extensive intramolecular bonding, which contributes significantly to the overall global protein stabilization. Identification of the surface-exposed peptide bonds, which are susceptible to papain digestion, has provided some constraints on the spatial orientations of subunits of the enzyme. This information, in turn, has provided supplemental data for X-ray crystallographic studies currently ongoing in our laboratories.  相似文献   

6.
Human polynucleotide kinase (hPNK), which possesses both 5'-DNA kinase and 3'-DNA phosphatase activities, is a DNA repair enzyme required for processing and rejoining of single- and double-strand-break termini. Full-length hPNK was subjected to sedimentation and spectroscopic analyses in association with its ligands, a 20-mer oligonucleotide, ATP, and AMP-PNP (a nonhydrolyzable analogue of ATP). Sedimentation equilibrium measurements indicated that hPNK was a monomer in the presence and absence of the ligands. Circular dichroism measurements revealed that the ligands induced different conformational changes in hPNK, although AMP-PNP induced the same conformational changes as ATP. CD also indicated that the oligonucleotide could bind to the protein-AMP-PNP complex. Protein-ligand binding affinities and stoichiometries were determined by measuring changes in protein intrinsic fluorescence. Titrating hPNK with the oligonucleotide indicated tight binding with a K(d) value of 1.3 microM and with 1:1 stoichiometry. A 5'-phosphorylated oligonucleotide with the same sequence exhibited an almost 6-fold lower affinity (K(d) value, 7.2 microM). ATP and AMP-PNP bound with high affinity (K(d) values, respectively, of 1.4 and 1.6 microM), and the observed binding stoichiometries were 1:1. Furthermore, the nonphosphorylated oligonucleotide was able to bind to hPNK in the presence of AMP-PNP with a K(d) value of 2.5 microM, confirming the formation of a ternary complex. This study provides the first direct physical evidence for such a ternary complex involving a polynucleotide kinase, AMP-PNP, and an oligonucleotide, and supports a reaction mechanism in which ATP and DNA bind simultaneously to the enzyme.  相似文献   

7.
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.  相似文献   

8.
The oxygenated complexes of the two catalytically active forms of pseudomonad and rat liver L-tryptophan-2,3-dioxygenase (EC 1.13.11.11) have been studied. As was previously reported (ISHIMURA, Y., NORZAKI, M., HAYAISHI, O., TAMURA, M., AND YAMAZAK-I I. (1970) J. Biol. Chem. 245, 3593-3602), we observe that the fully reduced form of pseudomonad tryptophan oxygenase during steady state catalysis exists predominantly as the L-tryptophan ferroheme-O2 enzyme complex (lambdamax = 415 nm, 540 nm, 570 nm). However, during steady state catalysis by a half-reduced form of both the pseudomonad and hepatic enzymes, the predominant species present manifest absorption spectra indicative of ternary complexes in which all the heme exists as ferriheme (Soret, 407 nm), there being no trace of a ferroheme-O2 complex. Carbon monoxide is a competitive inhibitor with respect to molecular oxygen of catalysis by either the half-reduced or fully reduced forms of pseudomonad tryptophan oxygenase. During steady state catalysis in the presence of CO, the fully reduced form of the enzyme exists as a mixture of the oxyferroheme (Soret = 415 nm) and carboxyferroheme (Soret = 421 nm) enzyme complexes. However, if the same experiment is repeated with the half-reduced form of the pseudomonad enzyme, all of the enzyme is in the ferriheme state, even though CO is inhibiting this form of the enzyme to the same degree as it does the fully reduced form. We conclude that for the half-reduced form of pseudomonad tryptophan oxygenase the substrate, O2, and the inhibitor, CO, are not binding to the heme moieties, but are bound elsewhere, presumably to the Cu(I) moieties. Examination of the kinetic mechanisms of the half-reduced and fully reduced forms of pseudomonad tryptophan oxygenase using the inhibitors carbon monoxide and 5-fluorotryptophan confirmed that the fully reduced enzyme binds L-tryptophan before O2 (FORMAN, H., AND FEIGELSON, P. (1971) Biochemistry 10, 760-763) and that for the half-reduced enzyme O2 binds first. In the presence of 5-fluorotryptophan a relatively stable oxyferroheme enzyme complex was generated with the fully reduced form of pseudomonad tryptophan oxygenase. Thus, saturation of the catalytic site alone either with the substrate, L-tryptophan, or the competitive inhibitor, 5-fluorotryptophan, enhances binding of O2 to the ferroheme moieties of the enzyme. The resistance of this complex to photolysis indicates that the bound molecular oxygen is predominantly present as superoxide, O2-minus.  相似文献   

9.
The binding of adriamycin and its two analogues 4'-epidoxorubicin and 4'-deoxydoxorubicin to synthetic and mitochondrial membranes was investigated by using resonance energy transfer between these drugs and two fluorescent probes, diphenylhexatriene (DPH) and tryptophan. The fluorescence of the lipid probe DPH in both types of membranes and tryptophan in mitochondria was quenched by the anthracyclines in a dose-dependent manner. In sonicated, fluid-phase dimyristoyl-L-alpha-phosphatidylcholine (DMPC) vesicles, the half-quenching concentration (K50) of adriamycin was 17 +/- 1 microM, whereas in bilayers containing a 1:1 molar ratio of DMPC to cardiolipin (CL), the value was 8 +/- 1 microM. In liver and heart mitochondria, the K50 values were 8 +/- 2 and 11 +/- 3 microM, respectively. Similar results were obtained for the other two drugs. Replacing a nonionic with an ionic medium or decreasing the pH from pH 7.7 to pH 6.9 increased the K50 value of adriamycin for DPH in DMPC/CL (1:1 molar) liposomes and in mitochondria. Higher concentrations of anthracycline were needed to quench the fluorescence of tryptophan. The results suggest that these drugs interact with both phospholipids and proteins and that the cardiotoxicity of adriamycin is unlikely to be related to the amount of drug bound to heart mitochondria.  相似文献   

10.
One- and two-dimensional NMR studies were performed on the complexes of porcine pancreatic phospholipase A2 with substrate analogs bound to a micellar lipid-water interface of fully deuterated dodecylphosphocholine. The interactions between the inhibitor and the enzyme were localized by comparison of the two-dimensional NOE spectra recorded for the enzyme-inhibitor complex using both protonated and selectively deuterated inhibitors. These experiments led us to the following conclusions for the phospholipase-A2-micelle complex: (i) the 38-kDa phospholipase A2 complex gives NMR spectra with relatively narrow lines, which is indicative of high mobility of the enzyme; (ii) the residues Ala1, Trp3, Phe63 and Tyr69 located in the interface recognition site, as well as Phe22, Tyr75, Phe106 and Tyr111 are involved in the micelle-binding process; (iii) when present on the micelle, phospholipase A2 is stereospecific for the inhibitor binding; (iv) the inhibitor, (R)-dodecyl-2-aminohexanol-1-phosphoglycol, binds stoichiometrically to phospholipase A2 with high affinity (Kd less than or equal to 10 microM); (v) the inhibitor binds in the active site of the enzyme, which is evidenced by large chemical-shift differences for Phe5, Ile9, Phe22, His48, Tyr52 and Phe106; (vi) the acyl chain of the inhibitor makes hydrophobic contacts (less than 0.4 nm) near Phe5, Ile9, Phe22 and Phe106. Comparison of our results on the enzyme-inhibitor-micelle ternary complex with the crystal structure of the enzyme-inhibitor complex [Thunnissen, M. M. G. M., AB, E., Kalk, K. H., Drenth, J., Dijkstra, B. W., Kuipers, O. P., Dijkman, R., de Haas, G. H. & Verheij, H. M. (1990) Nature 347, 689-691] shows that the mode of inhibitor binding is similar.  相似文献   

11.
Cao H  Pietrak BL  Grubmeyer C 《Biochemistry》2002,41(10):3520-3528
Quinolinate phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) catalyzes the formation of nicotinate mononucleotide, carbon dioxide, and pyrophosphate from 5-phosphoribosyl 1-pyrophosphate (PRPP) and quinolinic acid (QA, pyridine 2,3-dicarboxylic acid). The enzyme is the only type II PRTase whose X-ray structure is known. Here we determined the kinetic mechanism of the enzyme from Salmonella typhimurium. Equilibrium binding studies show that PRPP and QA each form binary complexes with the enzyme, with K(D) values (53 and 21 microM, respectively) similar to their K(M) values (30 and 25 microM, respectively). Although neither PP(i) nor NAMN products bound well to the enzyme, 130-fold tighter binding of PP(i) (K(D) = 75 microM) and NAMN (K(D) = 6 microM) in a ternary complex was observed. Phthalic acid (K(D) = 21 microM) and PRPP each caused a 2.5-fold tightening of the other's binding. Isotope trapping experiments indicated that the E.QA complex is catalytically competent, whereas the E.PRPP complex could not be trapped. Pre-steady-state kinetics gave a linear rate of NAMN formation, indicating that on-enzyme phosphoribosyl transfer chemistry is rate-determining. Isotope trapping from the steady state revealed that nearly all QA and about one-third of PRPP in ternary enzyme.QA.PRPP complexes could be trapped as the product. Substrate inhibition by PRPP was observed. These data demonstrate a predominantly ordered kinetic mechanism in which productive binding of quinolinic acid precedes that of PRPP. An E.PRPP complex exists as a nonproductive side branch.  相似文献   

12.
Betaine-homocysteine methyl transferase (BHMT) catalyzes the synthesis of methionine from betaine and homocysteine (Hcy), utilizing a zinc ion to activate Hcy. BHMT is a key liver enzyme that is important for homocysteine homeostasis. X-ray structures of human BHMT in its oxidized (Zn-free) and reduced (Zn-replete) forms, the latter in complex with the bisubstrate analog, S(delta-carboxybutyl)-L-homocysteine, were determined at resolutions of 2.15 A and 2.05 A. BHMT is a (beta/alpha)(8) barrel that is distorted to construct the substrate and metal binding sites. The zinc binding sequences G-V/L-N-C and G-G-C-C are at the C termini of strands beta6 and beta8. Oxidation to the Cys217-Cys299 disulfide and expulsion of Zn are accompanied by local rearrangements. The structures identify Hcy binding fingerprints and provide a prototype for the homocysteine S-methyltransferase family.  相似文献   

13.
The type 4 cAMP-specific phosphodiesterases (PDE4s) are Mg(2+)-dependent hydrolases that catalyze the hydrolysis of 3', 5'-cAMP to AMP. Previous studies indicate that PDE4 exists in two conformations that bind the inhibitor rolipram with affinities differing by more than 100-fold. Here we report that these two conformations are the consequence of PDE4 binding to its metal cofactor such as Mg(2+). Using a fluorescence resonance energy transfer (FRET)-based equilibrium binding assay, we identified that L-791,760, a fluorescent inhibitor, binds to the apoenzyme (free enzyme) and the holoenzyme (enzyme bound to Mg(2+)) with comparable affinities (K(d) approximately 30 nM). By measuring the displacement of the bound L-791,760, we have also identified that other inhibitors bind differentially with the apoenzyme and the holoenzyme depending upon their structure. CDP-840, SB-207499, and RP-73401 bind preferentially to the holoenzyme. The conformational-sensitive inhibitor (R)-rolipram binds to the holoenzyme and apoenzyme with affinities (K(d)) of 5 and 300 nM, respectively. In contrast to its high affinity (K(d) approximately 2 microM) and active holoenzyme complex, cAMP binds to the apoenzyme nonproductively with a reduced affinity (K(d) approximately 170 microM). These results demonstrate that cofactor binding to PDE4 is responsible for eliciting its high-affinity interaction with cAMP and the activation of catalysis.  相似文献   

14.
Electronic absorption and resonance Raman spectroscopies have been applied to study the ferric and ferrous forms, and fluoride complexes of the Tyr249Phe and Met275Ile variants of the recombinant catalase-peroxidase (KatG) from the cyanobacterium Synechocystis PCC 6803. Both crystal structures and mass spectrometric analysis demonstrated that Tyr249 and Met275 are part of a novel KatG-specific covalent adduct including in addition a conserved tryptophan. Its role is not well established, but it has been shown to be essential for the catalase activity. In the present work we investigate the effect of mutation on the protein stability and ligand binding. The results clearly show that mutation weakens the heme binding to the protein, giving rise to a partial conversion from the 5-coordinate high spin of the wild-type protein to 6-coordinate low-spin heme. An internal ligand binds the heme iron on the distal side as a consequence of protein destabilization and partially prevents the binding of external ligand such as fluoride. The results are compared with those previously reported for the Trp122Ala and Trp122Phe variants.  相似文献   

15.
A family of aryl isothiouronium derivatives was designed as probes for cation binding sites of Na(+),K(+)-ATPase. Previous work showed that 1-bromo-2,4,6-tris(methylisothiouronium)benzene (Br-TITU) acts as a competitive blocker of Na(+) or K(+) occlusion. In addition to a high-affinity cytoplasmic site (K(D) < 1 microM), a low-affinity site (K(D) approximately 10 microM) was detected, presumably extracellular. Here we describe properties of Br-TITU as a blocker at the extracellular surface. In human red blood cells Br-TITU inhibits ouabain-sensitive Na(+) transport (K(D) approximately 30 microM) in a manner antagonistic with respect to extracellular Na(+). In addition, Br-TITU impairs K(+)-stimulated dephosphorylation and Rb(+) occlusion from phosphorylated enzyme of renal Na(+),K(+)-ATPase, consistent with binding to an extracellular site. Incubation of renal Na(+),K(+)-ATPase with Br-TITU at pH 9 irreversibly inactivates Na(+),K(+)-ATPase activity and Rb(+) occlusion. Rb(+) or Na(+) ions protect. Preincubation of Br-TITU with red cells in a K(+)-free medium at pH 9 irreversibly inactivates ouabain-sensitive (22)Na(+) efflux, showing that inactivation occurs at an extracellular site. K(+), Cs(+), and Li(+) ions protect against this effect, but the apparent affinity for K(+), Cs(+), or Li(+) is similar (K(D) approximately 5 mM) despite their different affinities for external activation of the Na(+) pump. Br-TITU quenches tryptophan fluorescence of renal Na(+),K(+)-ATPase or of digested "19 kDa membranes". After incubation at pH 9 irreversible loss of tryptophan fluorescence is observed and Rb(+) or Na(+) ions protect. The Br-TITU appears to interact strongly with tryptophan residue(s) within the lipid or at the extracellular membrane-water interface and interfere with cation occlusion and Na(+),K(+)-ATPase activity.  相似文献   

16.
Sobrado P  Fitzpatrick PF 《Biochemistry》2003,42(47):13833-13838
The flavoenzyme tryptophan 2-monooxygenase catalyzes the oxidation of tryptophan to indoleacetamide, carbon dioxide, and water. The enzyme is a homologue of l-amino acid oxidase. In the structure of l-amino acid oxidase complexed with aminobenzoate, Tyr372 hydrogen bonds with the carboxylate of the inhibitor in the active site. All 10 conserved tyrosine residues in tryptophan 2-monooxygenase were mutated to phenylalanine; steady state kinetic characterization of the purified proteins identified Tyr413 as the residue homologous to Tyr372 of l-amino acid oxidase. Y413F and Y413A tryptophan 2-monooxygenase were characterized more completely with tryptophan as the substrate to probe the contribution of this residue to catalysis. Mutation of Tyr413 to phenylalanine results in a decrease in the value of the first-order rate constant for reduction of 35-fold and a decrease in the rate constant for oxidation of 11-fold. Mutation to alanine decreases the rate constant for reduction by 200-fold and that for oxidation by 33-fold. Both mutations increase the K(d) value for tryptophan and the K(i) values for the competitive inhibitors indoleacetamide and indole pyruvate by 5-10-fold. Both mutations convert the enzyme to an oxidase, in that the products of the catalytic reactions of both are indolepyruvate and hydrogen peroxide. The V/K(trp)-pH profiles for the Tyr413 mutant enzymes no longer show the pK(a) value of 9.9 seen in that for the wild-type enzyme, allowing identification of Tyr413 as the active site residue in the wild-type enzyme which must be protonated for catalysis. Substitution of Tyr413 abolishes the formation of the long wavelength charge transfer species observed in the wild-type enzyme. The data are consistent with the main role of Tyr413 being to maintain the correct orientation of tryptophan for effective hydride transfer and imino acid decarboxylation.  相似文献   

17.
Homocystinuria is an inborn error of metabolism caused by severe deficiency of cystathionine beta-synthase activity. It is biochemically characterized by tissue accumulation of homocysteine (Hcy) and methionine (Met). Homocystinuric patients present a variable degree of neurological dysfunction whose pathophysiology is poorly understood. In the present study, we investigated the in vitro effect of Hcy and Met on some parameters of energy metabolism in hippocampus of rats. CO(2) production from [U-14C] acetate, glucose uptake and lactate release were assessed by incubating hippocampus prisms from 28-day-old rats in Krebs-Ringer bicarbonate buffer, pH 7.4, in the absence (controls) or presence of Hcy (10-500 microM) or Met (0.2-2.0mM). Hcy and Met decreased CO(2) production in a dose-dependent manner and increased lactate release. In contrast, glucose uptake was not altered by the metabolites. The effect of Hcy and Met on cytochrome c oxidase activity was also studied. It was observed that Met did not alter this enzyme activity, in contrast with Hcy, which significantly inhibited cytochrome c oxidase activity. It is suggested that impairment of brain energy metabolism caused by the metabolites accumulating in homocystinuria may be related to the neurological symptoms present in homocystinuric patients.  相似文献   

18.
Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of the N5-methyl group of methyltetrahydrofolate (CH(3)-H(4)folate) to the sulfur of homocysteine (Hcy) to form methionine and tetrahydrofolate (H(4)folate) as products. This reaction is thought to involve a direct methyl transfer from one substrate to the other, requiring the two substrates to interact in a ternary complex. The crystal structure of a MetE.CH(3)-H(4)folate binary complex shows that the methyl group is pointing away from the Hcy binding site and is quite distant from the position where the sulfur of Hcy would be, raising the possibility that this binary complex is nonproductive. The CH(3)-H(4)folate must either rearrange or dissociate before methyl transfer can occur. Therefore, determining the order of substrate binding is of interest. We have used kinetic and equilibrium measurements in addition to isotope trapping experiments to elucidate the kinetic pathway of substrate binding in MetE. These studies demonstrate that both substrate binary complexes are chemically and kinetically competent for methyl transfer and suggest that the conformation observed in the crystal structure is indeed on-pathway. Additionally, the substrates are shown to bind synergistically, with each substrate binding 30-fold more tightly in the presence of the other. Methyl transfer has been determined to be slow compared to ternary complex formation and dissociation. Simulations indicate that nearly all of the enzyme is present as the ternary complex under physiological conditions.  相似文献   

19.
J Ellis  C R Bagshaw  W V Shaw 《Biochemistry》1991,30(44):10806-10813
Chloramphenicol acetyltransferase (CAT) catalyzes the acetyl-CoA-dependent acetylation of chloramphenicol by a ternary complex mechanism with a rapid equilibrium and essentially random order of addition of substrates. Such a kinetic mechanism for a two-substrate reaction provides an opportunity to compare the affinity of enzyme for each substrate in the binary complexes (1/Kd) with corresponding values (1/Km) for affinities in the ternary complex where any effect of the other substrate should be manifest. The pursuit of such information for CAT involved the use of four independent methods to determine the dissociation constant (Kd) for chloramphenicol in the binary complex, techniques which included stopped-flow measurements of on and off rates, and a novel fluorometric titration method. The binary complex dissociation constant (Kd) for acetyl-CoA was measured by fluorescence enhancement and steady-state kinetic analysis. The ternary complex dissociation constant (Km) for each substrate (in the presence of the other) was determined by kinetic and fluorometric methods, using CoA or ethyl-CoA to form nonproductive ternary complexes. The results demonstrate an unequivocal decrease in affinity of CAT for each of its substrates on progression from the binary to the ternary complex, a phenomenon most economically described as negative cooperativity. The binary complex dissociation constants (Kd) for chloramphenicol and acetyl-CoA are 4 microM and 30 microM whereas the corresponding dissociation constants in the ternary complex (Km) are 12 microM and 90 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Yeast xylose reductases are hypothesized as hybrid enzymes as their primary sequences contain elements of both the aldo-keto reductases (AKR) and short chain dehydrogenase/reductase (SDR) enzyme families. During catalysis by members of both enzyme families, an essential Lys residue H-bonds to a Tyr residue that donates proton to the aldehyde substrate. In the Saccharomyces cerevisiae xylose reductase, Tyr49 has been identified as the proton donor. However, the primary sequence of the enzyme contains two Lys residues, Lys53 and Lys78, corresponding to the conserved motifs for SDR and AKR enzyme families, respectively, that may H-bond to Tyr49. We used site-directed mutagenesis to substitute each of these Lys residues with Met. The activity of the K53M variant was slightly decreased as compared to the wild-type, while that of the K78M variant was negligible. The results suggest that Lys78 is the essential residue that H-bonds to Tyr49 during catalysis and indicate that the active site residues of yeast xylose reductases match those of the AKR, rather than SDR, enzymes. Intrinsic enzyme fluorescence spectroscopic analysis suggests that Lys78 may also contribute to the efficient binding of NADPH to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号