首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eukaryotic ribosomes are made of two components, four ribosomal RNAs, and approximately 80 ribosomal proteins (r-proteins). The exact number of r-proteins and r-protein genes in higher plants is not known. The strong conservation in eukaryotic r-protein primary sequence allowed us to use the well-characterized rat (Rattus norvegicus) r-protein set to identify orthologues on the five haploid chromosomes of Arabidopsis. By use of the numerous expressed sequence tag (EST) accessions and the complete genomic sequence of this species, we identified 249 genes (including some pseudogenes) corresponding to 80 (32 small subunit and 48 large subunit) cytoplasmic r-protein types. None of the r-protein genes are single copy and most are encoded by three or four expressed genes, indicative of the internal duplication of the Arabidopsis genome. The r-proteins are distributed throughout the genome. Inspection of genes in the vicinity of r-protein gene family members confirms extensive duplications of large chromosome fragments and sheds light on the evolutionary history of the Arabidopsis genome. Examination of large duplicated regions indicated that a significant fraction of the r-protein genes have been either lost from one of the duplicated fragments or inserted after the initial duplication event. Only 52 r-protein genes lack a matching EST accession, and 19 of these contain incomplete open reading frames, confirming that most genes are expressed. Assessment of cognate EST numbers suggests that r-protein gene family members are differentially expressed.  相似文献   

2.
3.
Murid rodents show much less variation in isochore base composition than do most other mammals, a difference which has been referred to as the murid shift. We have investigated the murid shift by asking (1) whether the murid shift is ongoing and (2) whether there is any evidence of selection or biased gene conversion affecting base composition in the present-day mouse genome. By estimating the ancestral base composition of protein-coding genes in murids we can confirm that the murid shift is ongoing. Tests using nongenic polymorphism data fail to reject the hypothesis that base composition is due to mutation bias alone. However, the patterns of compositional change suggested by the polymorphism and divergence data differ, suggesting the possibility of two murid shifts.  相似文献   

4.
5.
The isochore structure of the nuclear genome of angiosperms described by Salinas et al. (1) was confirmed by using a different experimental approach, namely by showing that the levels of coding sequences from both dicots and Gramineae are linearly correlated with GC levels of the corresponding flanking sequences. The compositional distribution of homologous coding sequences from several orders of dicots and from Gramineae were also studied and shown to mimick the compositional distributions previously seen (1) for coding sequences in general, most coding sequences from Gramineae being much higher than those of the dicots explored. These differences were even stronger for third codon positions and led to striking codon usages for many coding sequences especially in the case of Gramineae.  相似文献   

6.
Organ-specific expression of Arabidopsis genome during development   总被引:10,自引:0,他引:10       下载免费PDF全文
Ma L  Sun N  Liu X  Jiao Y  Zhao H  Deng XW 《Plant physiology》2005,138(1):80-91
The development of complex eukaryotic organisms can be viewed as the selective expression of distinct fractions of the genome in different organs or tissue types in response to developmental and environmental cues. Here, we generated a genome expression atlas of 18 organ or tissue types representing the life cycle of Arabidopsis (Arabidopsis thaliana). We showed that each organ or tissue type had a defining genome expression pattern and that the degree to which organs share expression profiles is highly correlated with the biological relationship of organ types. Further, distinct fractions of the genome exhibited expression changes in response to environmental light among the three seedling organs, despite the fact that they share the same photo-perception and transduction systems. A significant fraction of the genes in the Arabidopsis genome is organized into chromatin domains exhibiting coregulated expression patterns in response to developmental or environmental signals. The knowledge of organ-specific expression patterns and their response to the changing environment provides a foundation for dissecting the molecular processes underlying development.  相似文献   

7.
The endosperm is a seed tissue unique to flowering plants. Due to its central role in nourishing and protecting the embryo, endosperm development is subject to parental conflicts and adaptive processes, which led to the evolution of parent-of-origin-dependent gene regulation. The role of higher-order chromatin organization in regulating the endosperm genome was long ignored due to technical hindrance. We developed a combination of approaches to analyze nuclear structure and chromatin organization in Arabidopsis thaliana endosperm. Endosperm nuclei showed a less condensed chromatin than other types of nuclei and a peculiar heterochromatin organization, with smaller chromocenters and additional heterochromatic foci interspersed in euchromatin. This is accompanied by a redistribution of the heterochromatin mark H3K9me1 from chromocenters toward euchromatin and interspersed heterochromatin. Thus, endosperm nuclei have a specific nuclear architecture and organization, which we interpret as a relaxed chromocenter-loop model. The analysis of endosperm with altered parental genome dosage indicated that the additional heterochromatin may be predominantly of maternal origin, suggesting differential regulation of maternal and paternal genomes, possibly linked to genome dosage regulation.  相似文献   

8.
Mammalian chromosome banding--an expression of genome organization   总被引:26,自引:0,他引:26  
Banding of metaphase chromosomes is an invaluable aid to analysing the complex genomes of vertebrates, but the biochemical basis for this phenomenon is poorly understood. Advances in molecular biology are beginning to point to features of genome organization that may play roles in chromosome banding.  相似文献   

9.
10.
11.
Comparative genomic analysis of the malaria causative agent, Plasmodium falciparum, with other eukaryotes for which the complete genome is available, revealed that the genome from P. falciparum was more similar to the genome of a plant, Arabidopsis thaliana, than to other non-apicomplexan taxa. Plant-like sequences are thought to result from horizontal gene transfers after a secondary endosymbiosis involving an algal ancestor. The use of the A. thaliana genome and proteome as a reference gives an opportunity to refine our understanding of the extreme compositional bias in the P. falciparum genome that leads to a proteome-wide amino acid bias. A set of pairs of non-redundant protein homologues was selected owing to rigorous genome-wide sequence comparison methods. The introduction of A. thaliana as a reference was a mean to weight the magnitude of the protein evolutionary divergence in P. falciparum. The correlation of the amino acid proportions with evolutionary time supports the hypothesis that amino acids encoded by GC-rich codons are directionally substituted into amino acids encoded by AT-rich codons in the P. falciparum proteome. The long-term deviation of codons in malarial sequences appears as a possible consequence of a genome-wide tri-nucleotidic signature imprinting. Additionally, this study suggests possible working guidelines to improve the accuracy of P. falciparum sequence comparisons, for homology searches and phylogenetic studies.  相似文献   

12.
Mitochondrial DNA (mtDNA) encodes essential components of the cellular energy-producing apparatus, and lesions in mtDNA and mitochondrial dysfunction contribute to numerous human diseases. Understanding mtDNA organization and inheritance is therefore an important goal. Recent studies have revealed that mitochondria use diverse metabolic enzymes to organize and protect mtDNA, drive the segregation of the organellar genome, and couple the inheritance of mtDNA with cellular metabolism. In addition, components of a membrane-associated mtDNA segregation apparatus that might link mtDNA transmission to mitochondrial movements are beginning to be identified. These findings provide new insights into the mechanisms of mtDNA maintenance and inheritance.  相似文献   

13.
Arabidopsis and Medicago truncatula represent sister clades within the dicot subclass Rosidae. We used genetic map-based and bacterial artificial chromosome sequence-based approaches to estimate the level of synteny between the genomes of these model plant species. Mapping of 82 tentative orthologous gene pairs reveals a lack of extended macrosynteny between the two genomes, although marker collinearity is frequently observed over small genetic intervals. Divergence estimates based on non-synonymous nucleotide substitutions suggest that a majority of the genes under analysis have experienced duplication in Arabidopsis subsequent to divergence of the two genomes, potentially confounding synteny analysis. Moreover, in cases of localized synteny, genetically linked loci in M. truncatula often share multiple points of synteny with Arabidopsis; this latter observation is consistent with the large number of segmental duplications that compose the Arabidopsis genome. More detailed analysis, based on complete sequencing and annotation of three M. truncatula bacterial artificial chromosome contigs suggests that the two genomes are related by networks of microsynteny that are often highly degenerate. In some cases, the erosion of microsynteny could be ascribed to the selective gene loss from duplicated loci, whereas in other cases, it is due to the absence of close homologs of M. truncatula genes in Arabidopsis.  相似文献   

14.
Genetic information of human is encoded in two genomes: nuclear and mitochondrial. Both of them reflect molecular evolution of human starting from the beginning of life (about 4.5 billion years ago) until the origin of Homo sapiens species about 100,000 years ago. From this reason human genome contains some features that are common for different groups of organisms and some features that are unique for Homo sapiens. 3.2 x 10(9) base pairs of human nuclear genome are packed into 23 chromosomes of different size. The smallest chromosome - 21st contains 5 x 10(7) base pairs while the biggest one -1st contains 2.63 x 10(8) base pairs. Despite the fact that the nucleotide sequence of all chromosomes is established, the organisation of nuclear genome put still questions: for example: the exact number of genes encoded by the human genome is still unknown giving estimations from 30 to 150 thousand genes. Coding sequences represent a few percent of human nuclear genome. The majority of the genome is represented by repetitiVe sequences (about 50%) and noncoding unique sequences. This part of the genome is frequently wrongly called "junk DNA". The distribution of genes on chromosomes is irregular, DNA fragments containing low percentage of GC pairs code lower number of genes than the fragments of high percentage of GC pairs.  相似文献   

15.
16.
The genome of the model plant Arabidopsis thaliana is being analyzed in more and more detail. This paper reviews recent progress over the last 5 years. A first goal was to establish a catalogue of expressed genes using the EST (expressed sequence tag) strategy. Two consortia (French and American) have together released close to 30 000 EST representing approximately 10 000 genes. Such a catalogue has already facilitated a number of biological analyses. The next step, which is sequencing the whole genome, has already started with a European Union pilot project, which has demonstrated the feasability of the large scale sequencing of this genome. During the last 3 years 2.5 Mbp have been determined and data acquisition is accelerating tremendously. Two major questions remain for the future. What is the function of the genes with no known homology? How can this enormous information resource be used for the benefit of other plants? A few current ideas and perspectives are discussed.  相似文献   

17.
This paper examines macro and micro-level patterns of genome size evolution in the Brassicaceae. A phylogeny of 25 relatives of Arabidopsis thaliana was reconstructed using four molecular markers under both parsimony and Bayesian methods. Reconstruction of genome size (C value) evolution as a discrete character and as a continuous character was also performed. In addition, size dynamics in small chromosomal regions were assessed by comparing genomic clones generated for Arabidopsis lyrata and for Boechera stricta to the fully sequenced genome of A. thaliana. The results reveal a sevenfold variation in genome size among the taxa investigated and that the small genome size of A. thaliana is derived. Our results also indicate that the genome is free to increase or decrease in size across these evolutionary lineages without a directional bias. These changes are accomplished by insertions and deletions at both large and small-scales occurring mostly in intergenic regions, with repetitive sequences and transposable elements implicated in genome size increases. The focus upon taxa relatively closely related to the model organism A. thaliana, and the combination of complementary approaches, allows for unique insights into the processes driving genome size changes.  相似文献   

18.
19.
20.
The age of the Arabidopsis thaliana genome duplication   总被引:3,自引:0,他引:3  
We estimate the timing of the Arabidopsis thaliana whole-genome duplication by means of phylogenetic and statistical analysis, and propose two possible scenarios for the duplication. The first one, based on the assumption that the duplicated segments diverged from an autotetraploid form, places the duplication at about 38 million years ago, after the Arabidopsislineage diverged from that of soybean (Glycine max) and before it diverged from its sister genus, Brassica. The second scenario assumes that the ancestor was allotetraploid, and suggests that the duplication is younger than 38 million years and may have contributed to the Arabidopsis-Brassica divergence. In each case, our estimate places the age of the genome duplication as significantly younger than previously reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号