首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The tarso-pretarsal chordotonal organ as an element in cockroach walking   总被引:3,自引:3,他引:0  
Many types of sense organs have been demonstrated to show repetitive discharges during walking that could provide informational cues about leg movements and other parameters of locomotion. We have recorded activities of receptors of the distal (tarsal) segments of the cockroach hindleg in restrained and freely moving animals while they were videotaped. These recordings show peaks of activities at the onset and termination of the stance phase. We have morphologically and physiologically identified a joint angle receptor, the tarso-pretarsal chordotonal organ, that contributes to the discharges seen late in stance, prior to the onset of leg flexion in swing. This sense organ encodes the angle and rate of change of the most distal leg joint and specifically discharges when the claws are disengaged from the substrate. Applied displacements of the claws in restrained preparations elicit reflex activation of the tibial flexor muscle and a crossed extensor reflex in the opposite hindleg. These reflexes could function to insure that leg flexion in swing does not occur until the claws are disengaged and to enhance support by the opposite hindleg. Thus, the regular discharges of the chordotonal organ could assure efficient and coordinated muscle contractions and movements during normal, unperturbed walking. Accepted: 2 January 1997  相似文献   

2.
In the artificially closed femur-tibia control system of stick insects oscillations were induced in 3 different ways: Increasing the phase-shift by introducing an electronic delay, afference sign reversal and coupling the tibia to an inert mass. In all 3 cases the oscillations stopped after some time. The gain of the open-loop system was significantly smaller after the oscillations. Afference sign reversal by surgically crossing of the receptor apodeme of the femoral chordotonal organ for 25–85 days does not lead to altered characteristics of the control loop. When sinusoidal passive movements are forced upon the intact femur-tibia joint the forces resisting these movements do not decrease with time. In contrast to direct stimulation of the femoral chordotonal organ, these passive movements also influence the contralateral leg. The experiments show that the gain-control system of the femur-tibia control loop of stick insects consists of at least two components: A sensitization system (with inputs from many kinds of stimuli indicating some kind of disturbance) increases the gain of all reflex loops. A specific habituation-like system decreases the gain with repetitive stimulation only of one control system.Abbreviations fCO femoral chordotonal organ - SETi slow extensor tibiae motor neuron  相似文献   

3.
Hind legs with crossed receptor-apodemes of the femoral chordotonal organ when making a step during walking often do not release the ground after reaching the extreme posterior position. After putting a clamp on the trochanter (stimulation of the campaniform sensilla) the leg is no longer protracted during walking. However, during searching-movements the same leg is moved very far forwards. The anatomical situation of the campaniform sensilla on the trochanter and the sensory innervation of the trochanter is described. After removal of the hair-rows and continuously stimulating the hair-plate at the thorax-coxa-joint the extreme anterior and posterior positions of the leg in walking are displaced in the posterior direction. Front and middle legs operated in this way sometimes do not release the ground at the end of retraction. In searching-movements the same leg is moved in a normal way. If only one side of a decerebrated animal goes over a step, then on the other side a compensatory effect is observed. The main source of this compensatory information appears to be the BF1-hair-plates. If the animal has to drag a weight the extreme anterior and posterior positions of the middle and hind legs are displaced in the anterior direction. Crossing the receptor-apodeme of the femoral chordotonal organ, when it causes the leg to remain in the protraction phase, displaces the extreme posterior position of the ipsilateral leg in front of the operated one in the posterior direction. Influences of different sources on the extreme posterior position can superimpose. A model is presented which combines both a central programme and peripheral sensory influence. The word programme used here means that it does not only determine the motor output but also determines the reactions to particular afferences. The fact that the reaction to a stimulus depends on the internal state of the CNS is also represented by the model.Supported by Deutsche Forschungsgemeinschaft  相似文献   

4.
The nymphal locomotion ability (walking distance) of the stenophagous bean bug Riptortus pedestris (Fabricius) was studied in each instar. We measured the walking distance using two systems. The walking distance in photophase was measured for 6 h using a tracking system with a charge coupled device (CCD) camera and computer software. The daily activity of nymphs was measured by an actograph system counting the number of infrared beam intercepts. The actograph data were converted to distance using a linear regression against the data of the tracking system. The longevity of nymphs without food was also studied to estimate the potential walking distance. Using both the tracking and actograph systems, it was determined that first instars walked less than the other instars (only 10.7 m within 6 h). The second to fifth instars could move 20-25 m within 6 h, and this distance did not differ among instar. This indicates that first instars seldom move after hatching in the field. The walking distance for 24 h varied and was greatest for the third instars (80.8 m). The potential longevity of nymphs was found to increase with instar age. Potential locomotion ability (walking distance for 24 hxpotential longevity) was high in the third to fifth instars (approximately 340 m). The potential locomotion ability for the second instars was relatively low compared with the elder instars (approximately 180 m). From these results, nymphs of R. pedestris seem to adapt by identifying feeding site locations after hatching and elder instars may be able to find a novel feeding site after the degradation of previous habitat.  相似文献   

5.
Summary The development of the sensory neurons of the legs of the blowfly,Phormia regina has been described from the third instar larva to the late pupa using immunohistochemical staining. The leg discs of the third instar larva contain 8 neurons of which 5 come to lie in the fifth tarsomere of the developing leg. Whereas 2 neurons persist at least to the late pupa, the other cells degenerate. The first neurons of gustatory sensilla arise in the fifth tarsomere at about 1.5 h after formation of the puparium. Most of these sensilla, however, appear within a short time period beginning at about 18 h. The femoral chordotonal sensory neurons first appear at the time of formation of the puparium, as a mass of cells situated in the distal femur. During later pupal development 2 groups of these cells come to lie at the femur-trochanter border, where they become the proximal femoral chordotonal organ of the adult; the remaining cells become the distal femoral chordotonal organ. Other scolopidial neurons appear later in development. The nerve pathways of the late pupal leg are established either by the axons of the cells that are present in the larval leg disc or by new outgrowing processes of sensory neurons. In the tibia, the initial direction of new outgrowth differs in different regions of the segment: proximal tibial neurons grow distally, while distal tibial neurons grow initially proximally.  相似文献   

6.
Decapoda Crustacea molt in order to grow; some species, such as the Dungeness crab Cancer magister, achieve a very large size. Does sendory neuron hyperplasia in internal proprioceptors accompany this growth? To determine this, neurons in propodite-dactylopodite (PD) chordotonal organs were counted in first walking legs of juvenile (5th through 9th instar) and adult (10th through 13th instar) C. magister. We found that the PD organs of J5 crabs have about 56 neurons; the number increases to about 61 neurons in J6 crabs. Significant hyperplasia now occurs because an average of 79 neurons are found in the PD organs of J7 crabs. Little to no hyperplasia accompanies the several succeeding juvenile and adult molts (ca. 82–86 neurons are present). Because autotomized limbs are regenerated upon molting, we also examined how the number of PD organ neurons in regenerated legs compare with those of pristine legs. Newly regenerated legs (termed 1st stage regenerates) have fewer sensory neurons than do their contralateral pristine partners (65 vs 81); larger regenerated legs which have attained nearly normal size as a result of additional molts (2nd stage regenerates) still have fewer neurons than their pristine partners (69 vs 81). Additionally, in contrast to those of pristine walking legs, the elastic strand of PD organs from 1st stage regenerates is a misshapen sheet containing a cluster of small neurons with no obvious functional organization. Nonetheless, neurophysiological recordings indicate that all the receptor types typical for pristine legs (movement and position cells) are represented. The PD organs of 2nd stage regenerates differentiate to the shape and neuronal organization of pristine legs. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The Drosophila Dhr78 orphan nuclear receptor has been proposed to play a role in molting of the tracheal cuticle and regulate gene expression during the third larval instar, possibly in response to a novel systemic hormonal signal. Here, we show that there are no essential maternal functions for Dhr78 during development, and that mutants missing both maternal and zygotic Dhr78 function die primarily during second and third instar larval development. We show that defects in the tracheal system can be observed as early as the first instar, manifested as regions of fluid in the dorsal tracheal trunks. In addition, Dhr78 mutant tracheae show a highly penetrant defect in gas filling at the first-to-second instar larval molt. Dhr78 expression in only the tracheal system is sufficient to rescue the lethality of Dhr78 mutants, and selective inactivation of Dhr78 function in the tracheae by targeted RNAi is sufficient to result in tracheal defects. Finally, we see no evidence for widespread activation of the Dhr78 ligand binding domain in third instar larvae using the GAL4-LBD system, arguing against a systemic hormone for the receptor at this stage in development. Taken together, our results indicate that Dhr78 exerts its essential functions during molting of the tracheal cuticle in Drosophila.  相似文献   

8.
Hassan BA  Bermingham NA  He Y  Sun Y  Jan YN  Zoghbi HY  Bellen HJ 《Neuron》2000,25(3):549-561
Drosophila atonal (ato) is the proneural gene of the chordotonal organs (CHOs) in the peripheral nervous system (PNS) and the larval and adult photoreceptor organs. Here, we show that ato is expressed at multiple stages during the development of a lineage of central brain neurons that innervate the optic lobes and are required for eclosion. A novel fate mapping approach shows that ato is expressed in the embryonic precursors of these neurons and that its expression is reactivated in third instar larvae (L3). In contrast to its function in the PNS, ato does not act as a proneural gene in the embryonic brain. Instead, ato performs a novel function, regulating arborization during larval and pupal development by interacting with Notch.  相似文献   

9.
Isoform-specific null mutations were used to define the functions of three orphan members of the nuclear receptor superfamily, E75A, E75B, and E75C, encoded by the E75 early ecdysteroid-inducible gene. E75B mutants are viable and fertile, while E75C mutants die as adults. In contrast, E75A mutants have a reduced ecdysteroid titer during larval development, resulting in developmental delays, developmental arrests, and molting defects. Remarkably, some E75A mutant second instar larvae display a heterochronic phenotype in which they induce genes specific to the third instar and pupariate without undergoing a molt. We propose that ecdysteroid-induced E75A expression defines a feed-forward pathway that amplifies or maintains the ecdysteroid titer during larval development, ensuring proper temporal progression through the life cycle.  相似文献   

10.
1. Ontogenetic shifts in predator behaviour can affect the assessment of food‐web structure and the development of predator–prey models. Therefore, it is important to establish if the functional response and interference interactions differ between life‐stages. These hypotheses were tested by (i) comparing the functional response of second, third, fourth and fifth larval instars of Rhyacophila dorsalis, using three stream tanks with one Rhyacophila larva per tank and one of 10 prey densities between 20 and 200 larvae of Chironomus sp.; (ii) using other experiments to assess interference within instars (two to five larvae of the same instar per tank), and between pairs of different instars (one, two or three larvae per instar; total predator densities of two, four or six larvae per tank). 2. The first hypothesis was supported. The number of prey eaten by each instar increased with prey density, the relationship being described by a type II model. The curvilinear response was stronger for fourth and fifth instars than for second and third instars. Mean handling time did not change significantly with prey density, and increased with decreasing instar number from 169 s for fifth instars to 200 s for second instars. Attack rate decreased progressively with decreasing instar number. Handling time varied considerably for each predator–prey encounter, but was normally distributed for each predator instar. Variations in attack rate and handling time were related to differences in activity between instars, fourth and fifth instars being more active and aggressive than second and third instars, and having a higher food intake. 3. The second hypothesis was partially supported. In the interference experiments between larvae of the same instar or different instars, mean handling time did not change significantly with increasing predator density, and attack rate did not change for second and third instars but decreased curvilinearly for fourth and fifth instars. Interference between some instars could not be studied because insufficient second instars were available at the same time as fourth and fifth instars, and most third instars were eaten by fourth and fifth instars in the experiments. Prey capture always decreased with decreasing attack rate. Therefore, interference reduced prey consumption in fourth and fifth instars, but not in second and third instars. The varying feeding responses of different instars should be taken into account when assessing their role in predator–prey relationships in the field.  相似文献   

11.
Summary The development of cuticular patterns in the legs ofDrosophila melanogaster was studied in the temperature-sensitive cell autonomous lethal mutant1 (1)ts726 by treating animals with heat pulses of two days' duration at different developmental stages, in order to find out whether or not models which account for regulation of imaginal discs in the late third instar also hold for earlier developmental periods. Eight kinds of phenotypes were found, each of which occurred only after heat pulses that started at particular time: (1) complete and incomplete mirror image duplications of mesothoracic legs: early second instar; (2) homoeotic transformation to wing hinge in mesothoracic legs: early second instar; (3) prothoracic leg fusions: early second instar; (4) hypertrophied sex combs: early third instar; (5) outgrowths: early third instar; (6) sex comb teeth on second tarsal segment: early third instar; (7) reversed bristle polarity in intersegmental membrane gaps: early third instar; (8) deleted individual bristles: middle of third instar. These phenotypes were compared with patterns predicted by two models that have been devised to account for regeneration data: the polar coordinate model, and the gradient-of-morphogenetic-potential model. Some of the data (especially the finding of circumferentially incomplete partial duplicates) are more readily predicted by the polar coordinate model, although neither model can be ruled out. Phenotypes (6) and (7) can be accounted for by postulating a tandemly repeated positional signal corresponding to tarsal segmentation. The homoeotic transformation may be due to a transdetermination event occurring in situ during regulative growth following cell death. Since deletion of individual sex comb teeth leads to altered sex comb rotation, it is suggested that adjacent sex comb tooth cells interact during rotation.Address until September 1978: Institute of Molecular Biology, Billrothstraße 11, 5020 Salzburg, Austria  相似文献   

12.
The larval serum proteins, LSP1 and LSP2, of Drosophila melanogaster are synthesized by the fat body during the third instar. We examined the potential for LSP synthesis by fat body implants in adult flies. Fat body from third instar donors will continue to synthesize LSPs in both males and females. Implants from late second instar larvae will start synthesizing LSP1 and LSP2 in females but only LSP1 in males, suggesting that regulation of these proteins is not the same and that the physiological milieu in the two sexes differs. The newly synthesized LSPs are secreted into the hemolymph for approximately 48 hr when secretion stops but synthesis continues. This sequence follows the pattern for LSP secretion in situ. Fat body from mid second instar larvae is variable in its ability to synthesize LSPs. LSPs are not detected in implants from first instar larvae despite there being a high level of protein synthesis in the implant and considerable growth of the fat body cells. We conclude that there is a critical stage of differentiation during the latter half of the second instar when the fat body becomes independent of the larval milieu and can synthesize LSPs in the adult.  相似文献   

13.
The Drosophila Dhr78 orphan nuclear receptor has been proposed to play a role in molting of the tracheal cuticle and regulate gene expression during the third larval instar, possibly in response to a novel systemic hormonal signal. Here, we show that there are no essential maternal functions for Dhr78 during development, and that mutants missing both maternal and zygotic Dhr78 function die primarily during second and third instar larval development. We show that defects in the tracheal system can be observed as early as the first instar, manifested as regions of fluid in the dorsal tracheal trunks. In addition, Dhr78 mutant tracheae show a highly penetrant defect in gas filling at the first-to-second instar larval molt. Dhr78 expression in only the tracheal system is sufficient to rescue the lethality of Dhr78 mutants, and selective inactivation of Dhr78 function in the tracheae by targeted RNAi is sufficient to result in tracheal defects. Finally, we see no evidence for widespread activation of the Dhr78 ligand binding domain in third instar larvae using the GAL4-LBD system, arguing against a systemic hormone for the receptor at this stage in development. Taken together, our results indicate that Dhr78 exerts its essential functions during molting of the tracheal cuticle in Drosophila.  相似文献   

14.
Summary A system of chordotonal organs in the locust mesothorax consists of four subunits one of which connects to the coxa. Proprioceptive afferents from the scoloparia record the rotatory movements of the coxa. Mechanical stimulation of the sensory system by sinusoidal stretch or movements mimicking stretch as in natural walking of the locust elicits reflex activation of coxal motoneurones. Both assistance and resistance reflexes to imposed movements occur, but their intensity can vary from periods of suppression below firing threshold in a motoneurone to recruitment of additional motoneurones to the same muscle. It is concluded that some of these reflexes recorded in isolated preparations can also occur in freely walking animals where they should contribute to the muscular coordination of transitions between antagonistic movements.Abbreviations aCO, cCO, pCO, vCO anterior, coxal, posterior, ventral chordotonal organ - COS chordotonal organ system - pm-al postero-median to anterior-lateral  相似文献   

15.
To study developmental response of the brown-winged green bug, Plautia stali Scott, to food shortage we reared nymphs under restricted feeding conditions produced by shortening the feeding period after molt or withholding food from second to fifth instars. For second instars, molting rates were significantly reduced as the feeding period was shortened. Shortening the feeding periods for third to fifth instars also reduced molting rates, but less so; some nymphs were able to complete their developments even if no food was given to any of the instars. Compared with controls for which feeding was not restricted, nymphs that successfully reached the next instar had reduced postmolt body size as a result of restricted feeding for all instars except the fifth (2-day feeding for second instar, and 1-day feeding for third and fourth instars), whereas instar duration was unchanged or only slightly prolonged for all instars. These results suggest that only nymphs with nutritional accumulation over a specific threshold in each instar can progress to the next instar, and that, particularly for second to fourth instars, nymphs develop on schedule without prolonging instar durations to compensate for reduced growth under conditions of food shortage.  相似文献   

16.
The levels of de novo DNA methyltransferase were studied during the development of a mealybug, Planococcus lilacinus. No enzyme activity could be detected in extracts from second instar females. But the enzyme occurs at high levels in third instar females and is maintained at that level during fourth instar when gametogenesis, fertilization and chromosome imprinting occur. These results suggest a developmental stage-specific modulation of levels of DNA methyltransferase. Assays with synthetic polymers showed that the enzyme can methylate not only polymers containing GpG but also those containing CpA and CpI.  相似文献   

17.
Virulence and development of the insect-parasitic nematode, Steinernema carpocapsae (Weiser) (Mexican strain), were evaluated for the immature stages of the western corn rootworm, Diabrotica virgifera virgifera LeConte. Third instar rootworm larvae were five times more susceptible to nematode infection than second instar larvae and 75 times more susceptible than first instar larvae and pupae, based on laboratory bioassays. Rootworm eggs were not susceptible. Nematode development was observed in all susceptible rootworm stages, but a complete life cycle was observed only in second and third instar larvae and pupae. Nematode size was affected by rootworm stage; the smallest infective-stage nematodes were recovered from second instar rootworm larvae. Results of this study suggest that S. carpocapsae should be applied when second and third instar rootworm larvae are predominant in the field.  相似文献   

18.
Aseptic larvae of Anopheles stephensi and Toxorhynchites amboinensis were reared on a continuous cell line (RU TAE 12 V) from the mosquito, T. amboinensis, that grew in suspension as multicellular vesicles. Surface-sterilized eggs were hatched in a 24-well plate containing 0.2 ml of Leibovitz's L-15 medium per well and incubated in a humidified atmosphere. Toxorhynchites amboinensis eggs of 36 hr or older were placed singly to assure hatching and avoid cannibalism. Hatching rates were over 80%. All larval instars were maintained in L-15 medium at 28 C with a 12-hr photoperiod. Anopheles stephensi larvae were reared in 25-cm2 tissue culture flasks containing 10 ml of L-15 medium with 30 to 50 first and second instar larvae or 10 third and fourth instar larvae per flask. Toxorhynchites amboinensis larvae remained in the 24-well plate in 1.5 ml of medium through the second instar; third instar larvae were kept in 12-well plates (3 ml of medium per well) and transferred to 25-cm2 flasks (10 ml per flask) when they reached the fourth instar. First and second instar A. stephensi larvae were fed cultured cells once, and third or fourth instar larvae twice a day. Toxorhynchites amboinensis larvae were fed vesicles once during the first 4 days after hatching, and every 1 or 2 days thereafter. Each A. stephensi larva consumed approximately 2 X 10(6) cells, and T. amboinensis larvae 10 times more cells before pupating. Anopheles stephensi pupated after 7 to 8 days and adults emerged during days 9 to 11. Pupation in T. amboinensis began on day 21 after hatching and adults emerged 5 days later. Cell lines isolated from A. stephensi larvae or embryos of the ticks Rhipicephalus sanguineus and Anocentor (Dermacentor) nitens supported only limited growth of A. stephensi larvae. Defibrinated hamster (Mesocricetus auratus) blood, though readily ingested, did not support the growth of A. stephensi whereas larvae reared on blood cells plus T. amboinensis cells showed limited growth.  相似文献   

19.
Beauveria bassiana, an entomopathogenic fungus, was evaluated for its potential against second and third instar larvae of Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti. Conidiospores of this fungus were effective in causing infection leading to mortality of different larval instars. Larvae of Cx. quinquefasciatus were more susceptible to infection than An. stephensi and the second instar larvae of these two species were more susceptible than third instar larvae. Larvae of Ae. aegypti were resistant to infection by B. bassiana.  相似文献   

20.
Survival, reproduction and some biochemical changes in the citrus mealybug, Planococcus citri (Risso) parasitized by the endoparasitoid, Anagyrus pseudococci (Girault) are reported. The parasitized younger mealybugs were more likely to die than be successfully parasitized. The mean duration (±SE) required for mortality other than mummification were 1.85 ± 0.06, 2.48 ± 0.14 and 2.89 ± 0.17 days for first, second and third instar P. citri respectively. Hosts parasitized in the first instar did not produce any mummies while the second and third instar nymphs and adult stages of the mealybugs were mummified on average 8 to 11 days after attack. Parasitization caused cessation of normal fecundity as well as induction of early egg maturation of the mealybugs. The mealybugs parasitized in the adult stage produced a few eggs but the fecundity of unparasitized mealybugs was about 40 fold higher than that of parasitized mature adults. Parasitized pre-ovipositing and mature adults laid eggs within 24 h of attack. SDS-PAGE analysis of the body content of the parasitized mealybugs after 24 h and 48 h of parasitization and before egg hatch revealed an increase in the concentration of some proteins. Response to wound reactions was not visible either as formation of extra protein bands or increased density of the existing bands. The possible effect of parasitism on the changes of the reproductive physiology of the host is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号