首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lysA gene of Bacillus methanolicus MGA3 was cloned by complementation of an auxotrophic Escherichia coli lysA22 mutant with a genomic library of B. methanolicus MGA3 chromosomal DNA. Subcloning localized the B. methanolicus MGA3 lysA gene into a 2.3-kb SmaI-SstI fragment. Sequence analysis of the 2.3-kb fragment indicated an open reading frame encoding a protein of 48,223 Da, which was similar to the meso-diaminopimelate (DAP) decarboxylase amino acid sequences of Bacillus subtilis (62%) and Corynebacterium glutamicum (40%). Amino acid sequence analysis indicated several regions of conservation among bacterial DAP decarboxylases, eukaryotic ornithine decarboxylases, and arginine decarboxylases, suggesting a common structural arrangement for positioning of substrate and the cofactor pyridoxal 5'-phosphate. The B. methanolicus MGA3 DAP decarboxylase was shown to be a dimer (M(r) 86,000) with a subunit molecular mass of approximately 50,000 Da. This decarboxylase is inhibited by lysine (Ki = 0.93 mM) with a Km of 0.8 mM for DAP. The inhibition pattern suggests that the activity of this enzyme in lysine-overproducing strains of B. methanolicus MGA3 may limit lysine synthesis.  相似文献   

2.
The dapA gene, encoding dihydrodipicolinate synthase (DDPS) partially desensitized to inhibition by L-lysine, was cloned from an L-threonine- and L-lysine-coproducing mutant of the obligate methylotroph Methylobacillus glycogenes DHL122 by complementation of the nutritional requirement of an Escherichia coli dapA mutant. Introduction of the dapA gene into DHL122 and AL119, which is the parent of DHL122 and an L-threonine producing mutant, elevated the specific activity of DDPS 20-fold and L-lysine production 2- to 3-fold with concomitant reduction of L-threonine in test tube cultures. AL119 containing the dapA gene produced 8 g of L-lysine per liter in a 5-liter jar fermentor from methanol as a substrate. Analysis of the nucleotide sequence of the dapA gene shows that it encodes a peptide with an M(r) of 30,664 and that the encoded amino acid sequence is extensively homologous to those of other organisms. In order to study the mutation that occurred in DHL122, the dapA genes of the wild type and AL119 were cloned and sequenced. Comparison of the nucleotide sequences of the dapA genes revealed that the amino acid at residue 88 was F in DHL122 whereas it was L in the wild type and AL119, suggesting that this amino acid alteration that occurred in DHL122 caused the partial desensitization of DDPS to the inhibition by L-lysine. The similarity in the amino acid sequences of DDPS in M. glycogenes and other organisms suggests that the mutation of the dapA gene in DHL122 is located in the region concerned with interaction of the allosteric effector, L-lysine.  相似文献   

3.
Methionine auxotrophic mutants of Methylophilus methylotrophus AS1 expressing a mutant form of dapA (dapA24) encoding a dihydrodipicolinate synthase desensitized from feedback inhibition by L-lysine, and mutated lysE (lysE24) encoding the L-lysine exporter from Corynebacterium glutamicum 2256, produced higher amounts of L-lysine from methanol as sole carbon source than did other amino acid auxotrophic mutants. Especially, the M. methylotrophus 102 strain, carrying both dapA24 and lysE24, produced L-lysine in more than 1.5 times amounts higher than the parent. A single-base substitution was identified in this auxotroph in codon-329 of the open reading frame of metF, encoding 5,10-methylene-tetra-hydrofolate reductase. We constructed a metF disruptant mutant carrying both dapA24 and lysE24, and confirmed increases in L-lysine production. This is the first report to the effect that metF deficient increased L-lysine production in methylotroph.  相似文献   

4.
The obligate methylotroph Methylophilus methylotrophus AS1 expressing a mutant form of dapA (dapA24) encoding a dihydrodipicolinate synthase desensitized from feedback inhibition by L-lysine could secrete L-lysine into the medium, but also maintained a high concentration of intracellular L-lysine. To improve the yield from excretion, we attempted to introduce an L-lysine/L-arginine exporter (LysE) from Corynebacterium glutamicum 2256 into M. methylotrophus. We were unable to stably transform M. methylotrophus with a plasmid expressing the wild type lysE gene, but happened to obtain a transformant carrying a spontaneously mutated lysE gene (designated lysE24) which could induce L-lysine production even in the wild type strain. The transformant also possessed increased tolerance to S-(2-aminoethyl)-L-cysteine (an L-lysine analog). lysE24 has a single-base insertion mutation in the middle of the lysE gene, and its product is presumably quite different in structure from wild-type LysE. When lysE24 was introduced into an L-lysine producer of M. methylotrophus carrying dapA24, the level of intracellular L-lysine fell. During fermentation, M. methylotrophus carrying both lysE24 and dapA24 produced 10-fold more L-lysine (11.3 gl(-1) in jar-fermentation) than the parent producer carrying only dapA24 or lysE24. These results show the importance of the factor (lysE24) involved in the excretion of L-lysine on its overproduction in M. methylotrophus.  相似文献   

5.
The lysC/asd gene cluster of Corynebacterium glutamicum ATCC 13032 was cloned and sequenced. The lysC locus coding for aspartokinase consists of two in-frame overlapping genes, lysC alpha encoding a protein of 421 amino acids (Mr 44,300) and lysC beta encoding a protein of 172 amino acids (Mr 18,600). The C. glutamicum aspartokinase was purified and found to contain two proteins of Mr 47,000 and Mr 18,000. A C. glutamicum mutant expressing a feedback-resistant aspartokinase was shown to be changed in a single base pair of the lysC beta gene, leading to an amino acid exchange in the beta-subunit of the aspartokinase. In addition, the identified mutation was found to be responsible for the enhanced expression of the asd gene located downstream of lysC.  相似文献   

6.
The L-lysine biosynthetic pathway of the gram-negative obligate methylotroph Methylophilus methylotrophus AS1 was examined through characterization of the enzymes aspartokinase (AK), aspartsemialdehyde dehydrogenase, dihydrodipicolinate synthase (DDPS), dihydrodipicolinate reductase, and diaminopimelate decarboxylase. The AK was inhibited by L-threonine and by a combination of L-threonine and L-lysine, but not by L-lysine alone, and the activity of DDPS was moderately reduced by L-lysine. In an L-lysine producing mutant (G49), isolated as an S-(2-aminoethyl)-L-cysteine (lysine analog) resistant strain, both AK and DDPS were partially resistant to feedback inhibition. The ask and dapA genes encoding AK and DDPS respectively were isolated from the parental strain, AS1, and its G49 derivative. Comparison of the sequences revealed a point mutation in each of these genes in G49. The mutation in the ask gene altered aspartic acid in a key region involved in the allosteric regulation common to AKs, while a novel mutation in the dapA gene altered tyrosine-106, which was assumed to be involved in the binding of L-lysine to DDPS.  相似文献   

7.
The thermotolerant, restrictive methylotroph Bacillus methanolicus MGA3 (ATCC 53907) can secrete 55 g of glutamate per liter (maximum yield, 0.36 g/g) at 50 degrees C with methanol as a carbon source and a source of ammonia in fed-batch bioreactors. A homoserine dehydrogenase mutant, 13A52-8A66, secreting up to 35 g of L-lysine per liter in fed-batch fermentations had minimal 2-oxoglutarate dehydrogenase activity [7.3 nmol min(-1) (mg of protein)(-1)], threefold-increased pyruvate carboxylase activity [535 nmol min(-1) (mg of protein)(-1)], and elevated citrate synthase (CS) activity [292 nmol min(-1) (mg of protein)(-1)] and simultaneously secreted glutamate (20 to 30 g per liter) and L-lysine. The flow of carbon from oxaloacetate is split between transamination to aspartate and formation of citrate. To investigate the regulation of this branch point, the B. methanolicus gene citY encoding a CSII protein with activity at 50 degrees C was cloned from 13A52-8A66 into a CS-deficient Escherichia coli K2-1-4 strain. A citY-deficient B. methanolicus mutant, NCS-L-7, was also isolated from the parent strain of 13A52-8A66 by N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, followed by selection with monofluoroacetate disks on glutamate plates. Characterization of these strains confirmed that citY in strain 13A52-8A66 was not altered and that B. methanolicus possessed several forms of CS. Analysis of citY cloned from NCS-L-7 showed that the reduced CS activity resulted from a frameshift mutation. The level of glutamate secreted by NCS-L-7 was reduced sevenfold and the ratio of L-lysine to glutamate secreted was increased 4.5-fold compared to the wild type in fed-batch cultures with glutamate feeding. This indicates that glutamate secretion in L-lysine-overproducing mutants can be altered in favor of increased L-lysine secretion by regulating in vivo CS activity.  相似文献   

8.
Methionine auxotrophic mutants of Methylophilus methylotrophus AS1 expressing a mutant form of dapA (dapA24) encoding a dihydrodipicolinate synthase desensitized from feedback inhibition by L-lysine, and mutated lysE (lysE24) encoding the L-lysine exporter from Corynebacterium glutamicum 2256, produced higher amounts of L-lysine from methanol as sole carbon source than did other amino acid auxotrophic mutants. Especially, the M. methylotrophus 102 strain, carrying both dapA24 and lysE24, produced L-lysine in more than 1.5 times amounts higher than the parent. A single-base substitution was identified in this auxotroph in codon-329 of the open reading frame of metF, encoding 5,10-methylene-tetra-hydrofolate reductase. We constructed a metF disruptant mutant carrying both dapA24 and lysE24, and confirmed increases in L-lysine production. This is the first report to the effect that metF deficient increased L-lysine production in methylotroph.  相似文献   

9.
10.
Aspartokinase III (AKIII), one of three isozymes of Escherichia coli K-12, is inhibited allosterically by L-lysine. This enzyme is encoded by the lysC gene and has 449 amino acid residues. We analyzed the feedback inhibition site of AKIII by generating various lysC mutants in a plasmid vector. These mutants conferred resistance to L-lysine and/or an L-lysine analogue on their host. The inhibitory effects of L-lysine on and heat tolerance of 14 mutant enzymes were examined and DNA sequencing showed that the types of mutants were 12. Two hot spots, amino acid residue positions 318-325 and 345-352, were detected in the C-terminal region of AKIII and these enzyme regions may be important in L-lysine-mediated feedback inhibition of AKIII. Feedback resistant lysC relieved on L-threonine hyper-producing strain, B-3996, from reduced L-threonine productivity by addition of L-lysine, and furthermore increased L-threonine productivity even when no addition of L-lysine. It suggested that the bottleneck of L-threonine production of B-3996 was AK and feedback resistant lysC was effective because of the strict inhibition by cytoplasmic L-lysine.  相似文献   

11.
Thermosensitive mutants of Bacillus subtilis deficient in peptidoglycan synthesis were screened for mutations in the meso-diaminopimelate (LD-A2pm) metabolic pathway. Mutations in two out of five relevant linkage groups, lssB and lssD, were shown to induce, at the restrictive temperature, a deficiency in LD-A2pm synthesis and accumulation of UDP-MurNAc-dipeptide. Group lssB is heterogeneous; it encompasses mutations that confer deficiency in the deacylation of N-acetyl-LL-A2pm and accumulation of this precursor. Accordingly, these mutations are assigned to the previously identified locus dapE. Mutations in linkage group lssD entail a thermosensitive aspartokinase 1. Therefore, they are most likely to affect the structural gene of this enzyme, which we propose to designate dapG. Mutation pyc-1476, previously reported to affect the pyruvate carboxylase, was shown to confer a deficiency in aspartokinase 1, not in the carboxylase, and to belong to the dapG locus, dapG is closely linked to spoVF, the putative gene of dipicolinate synthase. In conclusion, mutations affecting only two out of eight steps known to be involved in LD-A2pm synthesis were uncovered in a large collection of thermosensitive mutants obtained by indirect selection. We propose that this surprisingly restricted distribution of the thermosensitive dap mutations isolated so far is due to the existence, in each step of the pathway, of isoenzymes encoded by separate genes. The biological role of different aspartokinases was investigated with mutants deficient in dapE and dapG genes. Growth characteristics of these mutants in the presence of various combinations of aspartate family amino acids allow a reassessment of a metabolic channel hypothesis, i.e. the proposed existence of multienzyme complexes, each specific for a given end product.  相似文献   

12.
Plasmids carrying an asd gene from a mutant. S-(2-aminoaethyl)-L-cysteine resistant strain of Corynebacterium glutamicum were selected from a clonoteque constructed on a plasmid cloning vector pSL5 by complementation of asd mutation in Escherichia coli. Evidence has been obtained that the cloned chromosomal DNA fragment contains also a complete sequence for feed-back-resistant aspartokinase lysC gene.  相似文献   

13.
14.
Bacillus methanolicus can utilize methanol as its sole carbon and energy source, and the scientific interest in this thermotolerant bacterium has focused largely on exploring its potential as a biocatalyst for the conversion of methanol into L-lysine and L-glutamate. We present here the genome sequences of the important B. methanolicus model strain MGA3 (ATCC 53907) and the alternative wild-type strain PB1 (NCIMB13113). The physiological diversity of these two strains was demonstrated by a comparative fed-batch methanol cultivation displaying highly different methanol consumption and respiration profiles, as well as major differences in their L-glutamate production levels (406 mmol liter(-1) and 11 mmol liter(-1), respectively). Both genomes are small (ca 3.4 Mbp) compared to those of other related bacilli, and MGA3 has two plasmids (pBM19 and pBM69), while PB1 has only one (pBM20). In particular, we focus here on genes representing biochemical pathways for methanol oxidation and concomitant formaldehyde assimilation and dissimilation, the important phosphoenol pyruvate/pyruvate anaplerotic node, the tricarboxylic acid cycle including the glyoxylate pathway, and the biosynthetic pathways for L-lysine and L-glutamate. Several unique findings were made, including the discovery of three different methanol dehydrogenase genes in each of the two B. methanolicus strains, and the genomic analyses were accompanied by gene expression studies. Our results provide new insight into a number of peculiar physiological and metabolic traits of B. methanolicus and open up possibilities for system-level metabolic engineering of this bacterium for the production of amino acids and other useful compounds from methanol.  相似文献   

15.
In this study, we report the acquisition of the diaminopimelic acid (DAP) pathway of lysine biosynthesis in choanoflagellate Monosiga brevicollis and investigate how this pathway is incorporated and regulated in the established metabolic network. Our data show that all major genes related to the DAP pathway in Monosiga were acquired from bacteria and algae. Although an endogenous lysC exists in Monosiga, the newly acquired lysC is fused to lysA and used specifically for lysine biosynthesis. In addition, these acquired genes encode two key rate-limiting enzymes, thus conferring Monosiga a self-regulated unit with ability to generate lysine. Our data suggest that a newly acquired metabolic capability can be added to the recipient organism without disturbing the previously established metabolic network. This finding also implies that the biochemical system of the recipient organism may determine the type and function of genes to be acquired.  相似文献   

16.
Toward more efficient L-lysine production, we have been challenging genome-based strain breeding by the approach of assembling only relevant mutations in a single wild-type background. Following the creation of a new L-lysine producer Corynebacterium glutamicum AHP-3 that carried three useful mutations (lysC311, hom59, and pyc458) on the relevant downstream pathways, we shifted our target to the pentose phosphate pathway. Comparative genomic analysis for the pathway between a classically derived L-lysine producer and its parental wild-type identified several mutations. Among these mutations, a Ser-361-->Phe mutation in the 6-phosphogluconate dehydrogenase gene (gnd) was defined as a useful mutation for L-lysine production. Introduction of the gnd mutation into strain AHP-3 by allelic replacement led to approximately 15% increased L-lysine production. Enzymatic analysis revealed that the mutant enzyme was less sensitive than the wild-type enzyme to allosteric inhibition by intracellular metabolites, such as fructose 1,6-bisphosphate, D-glyceraldehyde 3-phosphate, phosphoribosyl pyrophosphate, ATP, and NADPH, which were known to inhibit this enzyme. Isotope-based metabolic flux analysis demonstrated that the gnd mutation resulted in 8% increased carbon flux through the pentose phosphate pathway during L-lysine production. These results indicate that the gnd mutation is responsible for diminished allosteric regulation and contributes to redirection of more carbon to the pentose phosphate pathway that was identified as the primary source for NADPH essential for L-lysine biosynthesis, thereby leading to improved product formation.  相似文献   

17.
A simulation was developed based on experimental data obtained in a 14-L reactor to predict the growth and L-lysine accumulation kinetics, and change in volume of a large-scale (250-m(3)) Bacillus methanolicus methanol-based process. Homoserine auxotrophs of B. methanolicus MGA3 are unique methylotrophs because of the ability to secrete lysine during aerobic growth and threonine starvation at 50 degrees C. Dissolved methanol (100 mM), pH, dissolved oxygen tension (0.063 atm), and threonine levels were controlled to obtain threonine-limited conditions and high-cell density (25 g dry cell weight/L) in a 14-L reactor. As a fed-batch process, the additions of neat methanol (fed on demand), threonine, and other nutrients cause the volume of the fermentation to increase and the final lysine concentration to decrease. In addition, water produced as a result of methanol metabolism contributes to the increase in the volume of the reactor. A three-phase approach was used to predict the rate of change of culture volume based on carbon dioxide production and methanol consumption. This model was used for the evaluation of volume control strategies to optimize lysine productivity. A constant volume reactor process with variable feeding and continuous removal of broth and cells (VF(cstr)) resulted in higher lysine productivity than a fed-batch process without volume control. This model predicts the variation in productivity of lysine with changes in growth and in specific lysine productivity. Simple modifications of the model allows one to investigate other high-lysine-secreting strains with different growth and lysine productivity characteristics. Strain NOA2#13A5-2 which secretes lysine and other end-products were modeled using both growth and non-growth-associated lysine productivity. A modified version of this model was used to simulate the change in culture volume of another L-lysine producing mutant (NOA2#13A52-8A66) with reduced secretion of end-products. The modified simulation indicated that growth-associated production dominates in strain NOA2#13A52-8A66. (c) 1996 John Wiley & Sons, Inc.  相似文献   

18.
Two isoenzymes of aspartokinase can be found in extracts of the differentiating bacterium Myxococcus xanthus. Aspartokinase I is repressed by L-lysine and feedback is inhibited by meso-diaminopimelate and by low concentrations of L-lysine. However, the inhibition by L-lysine is no longer observed at high concentration of this amino acid. Aspartokinase II is repressed and feedback inhibited specifically by L-threonine. Both enzymes are stimulated significantly by L-methionine and L-isoleucine; the effect is greater with aspartokinase I. The role of these enzymes in relation to growth conditions of the organism is discussed and a correlation with life cycle activity is indicated.  相似文献   

19.
本文利用基因重组的方法,将宋内I相O抗原基因以及霍乱毒素B亚单位基因(ctx-B)克隆至带链球菌的asd基因的表达载体,然后转化至asd-痢疾菌苗株福氏2aT32。脂多糖银染以及Westernblotting实验证实以上两基因都能在宿主菌中稳定表达。动物(小白鼠)保护实验表明,该重组菌对福氏2a、宋内氏痢疾菌的保护效率达100%,对霍乱弧菌的保护效率也达70%。该菌具有稳定、无抗生素标记、多价的特点。  相似文献   

20.
AIM: To enhance L-lysine secretion in Lactobacillus plantarum. METHODS AND RESULTS: An S-2-aminoethyl-L-cystein (AEC)-resistant mutant of L. plantarum was isolated, and it produced L-lysine at considerably higher level than the parent strain. Aspartokinase in the mutant has been desensitized to feedback inhibition by L-lysine. The nucleotide sequence analysis of thrA2 that codes for aspartokinase in the mutant predicted a substitution of glutamine to histidine at position 421. L-Lysine-insensitive aspartokinase, together with aspartate semialdehyde dehydrogenase, dihydrodipicolinate synthase, and dihydrodipicolinate reductase genes, was cloned from L. plantarum DNA to a shuttle vector, pRN14, and the genes were then transformed individually into the AEC-resistant mutant and the parent strain. The overexpression of the genes led to the increase in the activity of enzymes they encode in vitro. However, only the strain overexpressing aspartokinase or dihydrodipicolinate synthase produced more L-lysine. CONCLUSIONS: The desensitization of aspartokinase to L-lysine in L. plantarum led to the overproduction of L-lysine. The overexpression of L-lysine-insensitive aspartokinase or dihydrodipicolinate synthase enhanced L-lysine secretion in L. plantarum. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of the L-lysine-overproducing strain of L. plantarum in food or feed fermentation may increase the L-lysine content of fermented products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号