首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adult mesenchymal stem cells (MSCs) are under investigation as an alternative cell source for the engineering of cartilage tissue in three-dimensional (3D) scaffolds. However, little is known about the intracellular mechanisms involved in the chondrogenic differentiation of MSCs. This study investigated the signaling pathways evoked by TGF-β1 and IGF-1 that mediated chondrogenic differentiation in adult rat bone-marrow derived MSCs in (i) monolayer on plastic and (ii) a 3D collagen-GAG scaffold. The data demonstrated involvement of the p38 pathway, but not ERK1/2 or PI3K in TGF-β1-induced chondrogenic differentiation in monolayer. Similarly, when the MSCs were seeded onto a collagen-GAG scaffold and treated with TGF-β1, the chondrogenic differentiation was dependent upon p38. In contrast, IGF-1-induced chondrogenic differentiation in monolayer involved p38, ERK1/2, as well as PI3K. The phosphorylation of Akt occurred downstream of PI3K and phospho-Akt was found to accumulate in the nucleus of IGF-1-treated cells. When MSCs were seeded onto the collagen-GAG scaffold and exposed to IGF-1, PI3K was required for chondrogenesis. These findings highlight the respective and differential involvement of p38, ERK1/2 and PI3K in growth factor-induced chondrogenesis of MSCs and demonstrates that intracellular signaling pathways are similar when differentiation is stimulated in a 2D or 3D environment.  相似文献   

2.
Cyclic AMP inhibited both ERK and Akt activities in rat C6 glioma cells. A constitutively active form of phosphatidylinositol 3-kinase (PI3K) prevented cAMP from inhibiting Akt, suggesting that the inactivation of Akt by cAMP is a consequence of PI3K inhibition. Neither protein kinase A nor Epac (Exchange protein directly activated by cAMP), two known direct effectors of cAMP, mediated the cAMP-induced inhibition of ERK and Akt phosphorylation. Cyclic AMP inhibited Rap1 activation in C6 cells. Moreover, inhibition of Rap1 by a Rap1 GTPase-activating protein-1 also resulted in a decrease in ERK and Akt phosphorylation, which was not further decreased by cAMP, suggesting that cAMP inhibits ERK and Akt by inhibiting Rap1. The role of Rap1 in ERK and Akt activity was further demonstrated by our observation that an active form of Epac, which activated Rap1 in the absence of cAMP, increased ERK and Akt phosphorylation. Inhibition of ERK and/or PI3K pathways mediated the inhibitory effects of cAMP on insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 gene expression. Moreover, cAMP, as well as ERK and PI3K inhibitors produced equivalent stimulation and inhibition, respectively, of p27(Kip1) and cyclin D2 protein levels, potentially explaining the observation that cAMP prevented C6 cells from entering S phase.  相似文献   

3.
4.
The embryonal carcinoma-derived cell line, ATDC5, differentiates into chondrocytes in response to insulin or insulin-like growth factor-I stimulation. In this study, we investigated the roles of mitogen-activated protein (MAP) kinases in insulin-induced chondrogenic differentiation of ATDC5 cells. Insulin-induced accumulation of glycosaminoglycan and expression of chondrogenic differentiation markers, type II collagen, type X collagen, and aggrecan mRNA were inhibited by the MEK1/2 inhibitor (U0126) and the p38 MAP kinase inhibitor (SB203580). Conversely, the JNK inhibitor (SP600125) enhanced the synthesis of glycosaminoglycan and expression of chondrogenic differentiation markers. Insulin-induced phosphorylation of ERK1/2 and JNK but not that of p38 MAP kinase. We have previously clarified that the induction of the cyclin-dependent kinase inhibitor, p21(Cip-1/SDI-1/WAF-1), is essential for chondrogenic differentiation of ATDC5 cells. To assess the relationship between the induction of p21 and MAP kinase activity, we investigated the effect of these inhibitors on insulin-induced p21 expression in ATDC5 cells. Insulin-induced accumulation of p21 mRNA and protein was inhibited by the addition of U0126 and SB203580. In contrast, SP600125 enhanced it. Inhibitory effects of U0126 or stimulatory effects of SP600125 on insulin-induced chondrogenic differentiation were observed when these inhibitors exist in the early phase of differentiation, suggesting that MEK/ERK and JNK act on early phase differentiation. SB202580, however, is necessary not only for early phase but also for late phase differentiation, indicating that p38 MAP kinase stimulates differentiation by acting during the entire period of cultivation. These results for the first time demonstrate that up-regulation of p21 expression by ERK1/2 and p38 MAP kinase is required for chondrogenesis, and that JNK acts as a suppressor of chondrogenesis by down-regulating p21 expression.  相似文献   

5.
The mesenchymal cell line C3H10T1/2 can be preferentially induced toward chondrogenesis by culturing as a micromass in the presence of bone morphogenetic protein 2. To screen new regulator genes for chondrogenic differentiation, we performed differential display polymerase chain reaction and identified growth arrest-specific 6 (Gas6) as a gene that was clearly downregulated by this induction of chondrogenic differentiation. Blockage of Gas6 mRNA expression by siRNA remarkably enhanced the chondrogenic differentiation, while stimulation with recombinant Gas6 inhibited the mRNA expressions of type II collagen (Col2a1) and aggrecan. Gas6 signaling activated the phosphorylation of ERK1/2, SAPK/JNK, and Akt, but not p38 MAPK. These results suggest that Gas6 negatively regulates chondrogenic differentiation, at least through the MAPK pathway.  相似文献   

6.
SH2-containing inositol-5′-phosphatase-1 (SHIP-1) controls the phosphatidylinositol-3′-kinase (PI3K) initiated signaling pathway by limiting cell membrane recruitment and activation of Akt. Despite the fact that many of the growth factors important to cartilage development and functions are able to activate the PI3K signal transduction pathway, little is known about the role of PI3K signaling in chondrocyte biology and its contribution to mammalian skeletogenesis. Here, we report that the lipid phosphatase SHIP-1 regulates chondrocyte hypertrophy and skeletal development through its expression in osteochondroprogenitor cells. Global SHIP-1 knockout led to accelerated chondrocyte hypertrophy and premature formation of the secondary ossification center in the bones of postnatal mice. Drastically higher vascularization and greater number of c-kit + progenitors associated with sinusoids in the bone marrow also indicated more advanced chondrocyte hypertrophic differentiation in SHIP-1 knockout mice than in wild-type mice. In corroboration with the in vivo phenotype, SHIP-1 deficient PDGFRα + Sca-1 + osteochondroprogenitor cells exhibited rapid differentiation into hypertrophic chondrocytes under chondrogenic culture conditions in vitro. Furthermore, SHIP-1 deficiency inhibited hypoxia-induced cellular activation of Akt and extracellular-signal-regulated kinase (Erk) and suppressed hypoxia-induced cell proliferation. These results suggest that SHIP-1 is required for hypoxia-induced growth signaling under physiological hypoxia in the bone marrow. In conclusion, the lipid phosphatase SHIP-1 regulates skeletal development by modulating chondrogenesis and the hypoxia response of the osteochondroprogenitors during endochondral bone formation.  相似文献   

7.
dlk1/FA1 (delta-like 1/fetal antigen-1) is a member of the epidermal growth factor-like homeotic protein family whose expression is known to modulate the differentiation signals of mesenchymal and hematopoietic stem cells in bone marrow. We have demonstrated previously that Dlk1 can maintain the human bone marrow mesenchymal stem cells (hMSC) in an undifferentiated state. To identify the molecular mechanisms underlying these effects, we compared the basal gene expression pattern in Dlk1-overexpressing hMSC cells (hMSC-dlk1) versus control hMSC (negative for Dlk1 expression) by using Affymetrix HG-U133A microarrays. In response to Dlk1 expression, 128 genes were significantly up-regulated (with >2-fold; p < 0.001), and 24% of these genes were annotated as immune response-related factors, including pro-inflammatory cytokines, in addition to factors involved in the complement system, apoptosis, and cell adhesion. Also, addition of purified FA1 to hMSC up-regulated the same factors in a dose-dependent manner. As biological consequences of up-regulating these immune response-related factors, we showed that the inhibitory effects of dlk1 on osteoblast and adipocyte differentiation of hMSC are associated with Dlk1-induced cytokine expression. Furthermore, Dlk1 promoted B cell proliferation, synergized the immune response effects of the bacterial endotoxin lipopolysaccharide on hMSC, and led to marked transactivation of the NF-kappaB. Our data suggest a new role for Dlk1 in regulating the multiple biological functions of hMSC by influencing the composition of their microenvironment "niche." Our findings also demonstrate a role for Dlk1 in mediating the immune response.  相似文献   

8.
9.
10.
During limb development, epithelial cells in the apical ectodermal ridge keep the underlying mesenchymal cells in a proliferative state preventing differentiation by secreting signaling molecules such as epidermal growth factor (EGF). We investigated the molecular mechanism of the EGF effect on the regulation of micromass culture-induced chondrogenesis of chick limb bud mesenchymal cells as a model system. We found that expression and tyrosine phosphorylation of the EGF receptor was increased transiently during chondrogenesis. Exogenous EGF inhibited chondrogenic differentiation of mesenchymal cells, and this effect was reversed by the EGF receptor inhibitor AG1478. EGF treatment also inhibited the expression and activation of protein kinase C-alpha, whereas it activated Erk-1 and inhibited p38 mitogen-activated protein kinase, all of which appeared to be involved in the EGF-induced inhibition of chondrogenesis. Stimulation of the EGF receptor blocked precartilage condensation and altered the expression of cell adhesion molecules such as N-cadherin and integrins alpha(5) and beta(1). All these EGF effects were reversible by AG1478. The data indicate that EGF negatively regulate chondrogenesis of chick limb bud mesenchymal cells by inhibiting precartilage condensation and by modulating signaling pathways including those of protein kinase C-alpha, Erk-1, and p38 mitogen-activated protein kinase.  相似文献   

11.
Cartilage development is initiated by the differentiation of mesenchymal cells into chondrocytes. Differentiated chondrocytes in articular cartilage undergo dedifferentiation and apoptosis during arthritis, in which NO production plays a critical role. Here, we investigated the roles and mechanisms of action of insulin-like growth factor-1 (IGF-1) in the chondrogenesis of mesenchymal cells and the maintenance and survival of differentiated articular chondrocytes. IGF-1 induced chondrogenesis of limb bud mesenchymal cells during micromass culture through the activation of phosphatidylinositol 3-kinase (PI3K) and Akt. PI3K activation is required for the activation of protein kinase C (PKC)-alpha and p38 kinase and inhibition of ERK1/2. These events are necessary for chondrogenesis. The growth factor additionally blocked NO-induced dedifferentiation and apoptosis of primary culture articular chondrocytes. NO production in chondrocytes induced down-regulation of PI3K and Akt activities, which was blocked by IGF-1 treatment. Stimulation of PI3K by IGF-1 resulted in blockage of NO-induced activation of p38 kinase and ERK1/2 and inhibition of PKCalpha and PKCzeta, which in turn suppressed dedifferentiation and apoptosis. Our results collectively indicate that IGF-1 regulates differentiation, maintenance of the differentiated phenotype, and apoptosis of articular chondrocytes via a PI3K pathway that modulates ERK, p38 kinase, and PKC signaling.  相似文献   

12.
Most proangiogenic factors exert their biological effects primarily by activating extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3-K)/Akt signaling pathways. These pathways appear to play a critical role in endothelial cell migration, because selective inhibition of either ERK or PI3-K/Akt signaling almost completely prevented endothelial cell migration. Recently, we demonstrated that a truncated kringle domain of human apolipoprotein(a), termed rhLK68, inhibits endothelial cell migration in vitro. However, its mechanism of action was not well defined. In this study, we determined the effects of rhLK68 on ERK1/2 and PI3-K/Akt signaling pathways to explore the molecular mechanism of rhLK68-mediated inhibition of endothelial cell migration. Treatment with rhLK68 inhibited ERK1/2 phosphorylation but did not influence Akt activation. Interestingly, an inhibitor of protein-tyrosine phosphatase, sodium orthovanadate, dose-dependently reversed both rhLK68-induced dephosphorylation of ERK1/2 and decreased migration of endothelial cells, whereas rhLK68 showed no significant effects on MEKs phosphorylation. In conclusion, these results indicate that inhibition of endothelial cell migration by rhLK68 may be achieved by interfering with ERK1/2 activation via a protein-tyrosine phosphatase-dependent pathway.  相似文献   

13.
14.
Inhibition of limb chondrogenesis by fibronectin   总被引:8,自引:0,他引:8  
Abstract. This study compares the chondrogenic capacity of high density cultures prepared from either the develop-mentally younger, distal region or more advanced proximal region of stage 23/24 limb mesenchyme in high density cultures. Distal cultures undergo extensive chondrogenesis whether in F12 medium supplemented with 10% fetal calf serum, 5% fetal calf serum, or fibronectin. On the other hand, proximal cultures fail to undergo chondrogenesis in medium containing 10% fetal calf serum or fibronectin, but do form cartilage in medium containing a decreased serum concentration or no serum. Furthermore, if the cells are cultured at low densities in native type I collagen gels, proximal cells have a reduced chondrogenic capacity in the presence of fibronectin, while chondrogenesis by distal cells is unaffected by the addition of fibronectin. The results demonstrate that proximal and distal cells respond differentially to serum and to fibronectin, and they suggest that the response of the cell to prevalent components of the extracellular matrix might change with development.  相似文献   

15.
The integrins and PI3K/Akt are important mediators of the signal transduction pathways involved in tumor angiogenesis and cell survival after exposure to ionizing radiation. Selective targeting of either integrins or PI3K/Akt can radiosensitize tumors. In this study, we tested the hypothesis that the combined inhibition of integrin alphanubeta3 by cRGD and PI3K/Akt by LY294002 would significantly enhance radiation-induced inhibition of angiogenesis by vascular endothelial cells. Treatment with cRGD inhibited the adhesion and tube formation of human umbilical vein endothelial cells (HUVECs). The inhibitory effect was further increased when cRGD and LY294002 were applied simultaneously. Both radiation and cRGD induced Akt phosphorylation, up-regulated COX2 expression, and increased PGE2 production in HUVECs. Treatment with LY294002 effectively inhibited radiation- and cRGD-induced Akt phosphorylation and up-regulation of COX2 and increased apoptosis of HUVECs. The combined use of cRGD and LY294002 enhanced radiation-induced cell killing. The clonogenic survival of HUVECs was decreased from 34% with 2 Gy radiation to 4% with these agents combined. These results demonstrate that combined use of ionizing radiation, cRGD and LY294002 inhibited multiple signaling transduction pathways involved in tumor angiogenesis and enhanced radiation-induced effects on vascular endothelial cells.  相似文献   

16.
17.
In this study, a neuroblastoma N2a cell line was applied to investigate mechanisms of apoptosis induced either by selective inhibition of protein kinase C (PKC) by low amounts of staurosporine (STS(10) ) or by inhibition PI3-K after wortmannin (WM) treatment. We present evidence that, in the absence of serum in the medium, decreased phosphorylation of Raf-1 and BAD112, as well as Akt and BAD136, proteins and their translocation to mitochondria coincided with STS10 - or WM-induced apoptosis, respectively. Concomitantly, release of cytochrome c into the cytosol indicated a BCL-2-dependent mode of cell death after both treatments. Furthermore, in typical 'gain of function' experiments, cells with overexpression of permanently active Raf-1 or Akt transgenes displayed a significantly higher and independent resistance to either STS10 or WM. Thus, our results indicate that PKC/Raf-1/BAD112, as well as PI3-K/Akt/BAD136 signalling pathways, are both necessary for N2a cell survival and thus are unable to functionally substitute for each other as long as the cells do not receive additional signal(s) derived from serum. However, in the presence of serum, undefined trophic signal(s) can stimulate cross-talk between these two pathways at a level upstream from Raf-1 and Akt phosphorylation. In this case, only simultaneous inhibition of PKC and PI3-K is able to induce apoptosis.  相似文献   

18.
Sphingolipids act as signaling mediators that regulate a diverse range of cellular events. Although numerous sphingolipid functions have been studied, little is known about the effect of sphingolipids on monocyte differentiation into macrophages. Here, we report that two lysosphingolipids, sphingosylphosphorylcholine (SPC) and lysosulfatide (LSF), inversely affect macrophagic differentiation of monocytic cell lines, U937 and THP-1. Molecular analyses revealed that SPC enhances, whereas LSF suppresses, phorbol ester-induced classical (M1-polarized) differentiation to macrophages. The expression of CD11b, a macrophage marker, was induced in accordance with the activation status of the Raf/MEK/ERK signaling pathway in which SPC and LSF had opposite effects. Pharmacological inhibition of this pathway aborted the differentiation, indicating that this signaling pathway is required. Consistently, SPC promoted, while LSF inhibited, monocyte adhesion to fibronectin, through the phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway. The effects of SPC on Raf/MEK/ERK and PI3K/Akt signaling were dependent on Gi/o, whereas the SPC-induced calcium influx was dependent on Gq. Thus SPC utilizes G-protein coupled receptor. In contrast, the effects of LSF were independent of Gi/o and Gq. These results suggest that SPC enhances, whereas LSF suppresses, monocyte differentiation into macrophages through regulating the Raf/MEK/ERK and PI3K/Akt signaling pathways via distinct mechanisms.  相似文献   

19.
Serine/threonine kinase Akt regulates key cellular processes such as cell growth, proliferation, and survival. Activation of Akt by mitogenic factor depends on phosphatidylinositol 3-kinase (PI3K). Here, we report that IKBKE (also known as IKKε and IKKi) activates Akt through a PI3K-independent pathway. IKBKE directly phosphorylates Akt-Thr308 and Ser473 independent of the pleckstrin homology (PH) domain. IKBKE activation of Akt was not affected by inhibition of PI3K, knockdown of PDK1 or mTORC2 complex. Further, this activation could be inhibited by Akt inhibitors MK-2206 and GSK690693 but not the compounds (perifosine and triciribine) targeting the PH domain of Akt. Expression of IKBKE largely correlates with activation of Akt in breast cancer. Moreover, inhibition of Akt suppresses IKBKE oncogenic transformation. These findings indicate that IKBKE is an Akt-Thr308 and -Ser473 kinase and directly activates Akt independent of PI3K, PDK1, and mTORC2 as well as PH domain. Our data also suggest that Akt inhibitors targeting the PH domain have no effect on the tumors in which hyperactive Akt resulted from elevated IKBKE.  相似文献   

20.
Characteristics of hVSMC apoptosis and its inhibition by insulin-like growth factor-1 (IGF-1) remain unclear. Also unclear is whether a balance in hVSMCs exists whereby c-Jun N-terminal stress kinases (JNK) promote apoptosis while extracellular signal-regulated (ERK1/2) MAP kinases inhibit cell death. In this study, we examined the involvement of Akt/PKB and its upstream kinase, PDK1 and whether JNK activation correlated with human and rat VSMC apoptosis induced by staurosporine and by c-myc, respectively. We observed a strong, sustained JNK activation (and c-Jun phosphorylation), which correlated with VSMC apoptosis. IGF-1 (13.3 nM), during apoptosis inhibition, transiently inhibited JNK activity at 1 h in a phosphatidylinositol 3-kinase (PI3-K)- and MEK-ERK-dependent manner, as wortmannin (100 nM) or PD98059 (30 M) partially attenuated the IGF-1 effect. PKC down-regulation had no effect on JNK inhibition by IGF-1. While IGF-1 alone produced a strong phosphorylation of Akt/PKB in hVSMCs up to 6 h, it was notably stronger and more sustained during ratmyc and hVSMCs apoptosis inhibition. Further, whereas transient expression of phosphorylated Akt protected VSMCs from apoptosis by nearly 50%, expression of dominant interfering alleles of Akt or PDK1 strongly inhibited IGF-1-mediated VSMC survival. These results demonstrate for the first time that transient inhibition of a pro-apoptotic stimulus in VSMCs may be sufficient to inhibit a programmed cell death and that sustained anti-apoptotic signals (Akt) elicited by IGF-1 are augmented during a death stimulus. Furthermore, PI3-K and ERK-MAPK pathways may cooperate to protect VSMCs from cell death.This work was supported by a grant from the Nebraska cancer and Smoking Related Disease Program, Department of Health, Nebraska, and National Institutes of Health Grants R01HL070885 (D.K.A.) and R01HL073349 (D.K.A.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号