首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
S-nitrosylation of nuclear factor κB (NF-κB) on the p65 subunit of the p50/p65 heterodimer inhibits NF-κB DNA binding activity. We have recently shown that p65 is constitutively S-nitrosylated in the lung and that LPS-induced injury elicits a decrease in SNO-p65 levels concomitant with NF-κB activation in the respiratory epithelium and initiation of the inflammatory response. Here, we demonstrate that TNFα-mediated activation of NF-κB in the respiratory epithelium similarly induces p65 denitrosylation. This process is mediated by the denitrosylase thioredoxin (Trx), which becomes activated upon cytokine-induced degradation of thioredoxin-interacting protein (Txnip). Similarly, inhibition of Trx activity in the lung attenuates LPS-induced SNO-p65 denitrosylation, NF-κB activation, and airway inflammation, supporting a pathophysiological role for this mechanism in lung injury. These data thus link stimulus-coupled activation of NF-κB to a specific, protein-targeted denitrosylation mechanism and further highlight the importance of S-nitrosylation in the regulation of the immune response.  相似文献   

2.
3.
4.
Bronchopulmonary dysplasia is a common pulmonary complication of extreme prematurity. Arrested lung development leads to bronchopulmonary dysplasia, but the molecular pathways that cause this arrest are unclear. Lung injury and inflammation increase disease risk, but the cellular site of the inflammatory response and the potential role of localized inflammatory signaling in inhibiting lung morphogenesis are not known. In this study, we show that tissue macrophages present in the fetal mouse lung mediate the inflammatory response to LPS and that macrophage activation inhibits airway morphogenesis. Macrophage depletion or targeted inactivation of the NF-κB signaling pathway protected airway branching in cultured lung explants from the effects of LPS. Macrophages also appear to be the primary cellular site of IL-1β production following LPS exposure. Conversely, targeted NF-κB activation in transgenic macrophages was sufficient to inhibit airway morphogenesis. Macrophage activation in vivo inhibited expression of multiple genes critical for normal lung development, leading to thickened lung interstitium, reduced airway branching, and perinatal death. We propose that fetal lung macrophage activation contributes to bronchopulmonary dysplasia by generating a localized inflammatory response that disrupts developmental signals critical for lung formation.  相似文献   

5.
6.
7.
8.
To determine the role of respiratory epithelial cells in the inflammatory response to inhaled endotoxin, we selectively inhibited NF-kappa B activation in the respiratory epithelium using a mutant I kappa B-alpha construct that functioned as a dominant negative inhibitor of NF-kappa B translocation (dnI kappa B-alpha). We developed two lines of transgenic mice in which expression of dnI kappa B-alpha was targeted to the distal airway epithelium using the human surfactant apoprotein C promoter. Transgene expression was localized to the epithelium of the terminal bronchioles and alveoli. After inhalation of LPS, nuclear translocation of NF-kappa B was evident in bronchiolar epithelium of nontransgenic but not of transgenic mice. This defect was associated with impaired neutrophilic lung inflammation 4 h after LPS challenge and diminished levels of TNF-alpha, IL-1 beta, macrophage inflammatory protein-2, and KC in lung homogenates. Expression of TNF-alpha within bronchiolar epithelial cells and of VCAM-1 within peribronchiolar endothelial cells was reduced in transgenic animals. Thus targeted inhibition of NF-kappa B activation in distal airway epithelial cells impaired the inflammatory response to inhaled LPS. These data provide causal evidence that distal airway epithelial cells and the signals they transduce play a physiological role in lung inflammation in vivo.  相似文献   

9.
NLRC5, the largest member of the Nod-like receptor (NLR) family, has been reported to play a pivotal role in regulating inflammatory responses. Recent evidence suggests that NLRC5 participates in Toll-like receptor (TLR) signaling pathways and negatively modulates nuclear factor-κB (NF-κB) activation. In this study, we investigated the interaction between NLRC5 and TLR2 in the NF-κB inflammatory signaling pathway and the involvement of NLRC5 in TLR2-mediated allergic airway inflammation. We knocked down TLR2 and NLRC5, respectively in the RAW264.7 macrophage cell line by small interfering RNA (siRNA) and then stimulated the knockdown cells with lipoteichoic acid (LTA). In comparison with the negative siRNA group, the level of NLRC5 expression was lower in the TLR2 siRNA group, with a reduction in the NF-κB-related inflammatory response. Conversely, in the NLRC5 knockdown cells, after LTA-treated the level of TLR2 expression did not change but the expression levels of both NF-κB pp65 and NLRP3 increased remarkably. Thus, we hypothesize that NLRC5 participates in the LTA-induced inflammatory signaling pathway and regulates the inflammation via TLR2/NF-κB. Similarly, in subsequent in vivo experiments, we demonstrated that the expression level of NLRC5 was significantly increased in the ovalbumin-induced allergic airway inflammation. However, this effect disappeared in TLR2-deficient (TLR2 −/−) mice and was accompanied by reduced levels of NF-κB expression and airway inflammation. In conclusion, NLRC5 negatively regulates LTA-induced inflammatory response via a TLR2/NF-κB pathway in macrophages and also participates in TLR2-mediated allergic airway inflammation.  相似文献   

10.
目的观察早期戒烟后大鼠肺组织病理及炎性介质表达变化规律。方法选用Wistar雄性大鼠80只,随机分为对照组及早期戒烟后0天、1周、2周、4周、6周、8周、12周组。采用酶联免疫吸附方法测定各组大鼠血清中IL-8的蛋白质含量,S-P免疫组化学方法检测肺组织NF-κB p65的表达,并光镜下观察HE染色切片、对大鼠气道炎症进行病理学评分。结果早期戒烟组大鼠可见气道上皮细胞纤毛发生粘连、倒伏,上皮细胞空泡变形、坏死、增生,炎症细胞浸润;其血清IL-8浓度、肺组织NF-κB的表达及气道炎症病理评分在戒烟后各时相点较未吸烟对照组明显升高,有统计学意义(P〈0.05)。早期戒烟组大鼠血清IL-8的浓度、肺组织NF-κB的表达及肺组织病理炎症评分在戒烟后略有上升、且在戒烟后8周达到高峰,但随后在戒烟12周时可见IL-8的浓度有下降趋势,肺组织病理炎症反应有所减轻。结论早期戒烟大鼠在戒烟早期虽可见炎症反应略有加重,但随戒烟时间延长,仍可见炎症反应有所减轻。因此,提倡及早且坚持戒烟。  相似文献   

11.
Although airway epithelial cells provide important barrier and host defense functions, a crucial role for these cells in development of acute lung inflammation and injury has not been elucidated. We investigated whether NF-kappaB pathway signaling in airway epithelium could decisively impact inflammatory phenotypes in the lungs by using a tetracycline-inducible system to achieve selective NF-kappaB activation or inhibition in vivo. In transgenic mice that express a constitutively active form of IkappaB kinase 2 under control of the epithelial-specific CC10 promoter, treatment with doxycycline induced NF-kappaB activation with consequent production of a variety of proinflammatory cytokines, high-protein pulmonary edema, and neutrophilic lung inflammation. Continued treatment with doxycycline caused progressive lung injury and hypoxemia with a high mortality rate. In contrast, inducible expression of a dominant inhibitor of NF-kappaB in airway epithelium prevented lung inflammation and injury resulting from expression of constitutively active form of IkappaB kinase 2 or Escherichia coli LPS delivered directly to the airways or systemically via an osmotic pump implanted in the peritoneal cavity. Our findings indicate that the NF-kappaB pathway in airway epithelial cells is critical for generation of lung inflammation and injury in response to local and systemic stimuli; therefore, targeting inflammatory pathways in airway epithelium could prove to be an effective therapeutic strategy for inflammatory lung diseases.  相似文献   

12.
Natural plant-derived products are commonly applied to treat a broad range of human diseases, including cancer as well as chronic and acute airway inflammation. In this regard, the monoterpene oxide 1,8-cineol, the active ingredient of the clinically approved drug Soledum®, is well-established for the therapy of airway diseases, such as chronic sinusitis and bronchitis, chronic obstructive pulmonary disease and bronchial asthma. Although clinical trials underline the beneficial effects of 1,8-cineol in treating inflammatory diseases, the molecular mode of action still remains unclear.Here, we demonstrate for the first time a 1,8-cineol-depending reduction of NF-κB-activity in human cell lines U373 and HeLa upon stimulation using lipopolysaccharides (LPS). Immunocytochemistry further revealed a reduced nuclear translocation of NF-κB p65, while qPCR and western blot analyses showed strongly attenuated expression of NF-κB target genes. Treatment with 1,8-cineol further led to increased protein levels of IκBα in an IKK-independent matter, while FRET-analyses showed restoring of LPS-associated loss of interaction between NF-κB p65 and IκBα. We likewise observed reduced amounts of phosphorylated c-Jun N-terminal kinase 1/2 protein in U373 cells after exposure to 1,8-cineol. In addition, 1,8-cineol led to decreased amount of nuclear NF-κB p65 and reduction of its target gene IκBα at protein level in human peripheral blood mononuclear cells.Our findings suggest a novel mode of action of 1,8-cineol through inhibition of nuclear NF-κB p65 translocation via IκBα resulting in decreased levels of proinflammatory NF-κB target genes and may therefore broaden the field of clinical application of this natural drug for treating inflammatory diseases.  相似文献   

13.
Early weaning usually causes intestinal disorders, enteritis, and diarrhea in young animals and human infants. Astragalus polysaccharides (APS) possesses anti-inflammatory activity. To study the anti-inflammatory mechanisms of APS and its potential effects on intestinal health, we performed an RNA sequencing (RNA-seq) study in lipopolysaccharide (LPS)-stimulated porcine intestinal epithelial cells (IPEC-J2) in vitro. In addition, LPS-stimulated BALB/c mice were used to study the effects of APS on intestinal inflammation in vivo. The results from the RNA-seq analysis show that there were 107, 756, and 5 differentially expressed genes in the control versus LPS, LPS versus LPS+APS, and control versus LPS+APS comparison groups, respectively. The results of Kyoto Encyclopedia of Genes and Genomes enrichment analysis indicated that the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways play significant roles in the regulation of inflammatory factors and chemokine expression by APS. Further verification of the above two pathways by using western blot and immunofluorescence analysis revealed that the gene expression levels of the phosphorylated p38 MAPK, ERK1/2, and NF-κB p65 were inhibited by APS, while the expression of IκB-α protein was significantly increased (p < .05), indicating that APS inhibits the production of inflammatory factors and chemokines by the inhibition of activation of the MAPK and NF-κB inflammatory pathways induced by LPS stimulation. Animal experiments further demonstrated that prefeeding APS in BALB/c mice can alleviate the expression of the jejunal inflammatory factors interleukin 6 (IL-6), IL-Iβ, and tumor necrosis factor-α induced by LPS stimulation and improve jejunal villus morphology.  相似文献   

14.
Precise control of the LPS stimulation in the lung modulates inflammation and airway hyperresponsiveness involving the well-known TLR4/NF-κB pathway. As a consequence, the expression and secretion of proinflammatory cytokines is tightly regulated with the recruitment of neutrophils. Changes in the LPS-induced responses have been observed in the Prmt2-Col6a1 monosomic model, suggesting the presence of dosage-sensitive genes controlling LPS pathway in the mouse. In this article, we report that the Prmt2 regulates the LPS-induced lung responses in lungs and macrophages. We demonstrate that Prmt2 gene dosage influences the lung airway hyperresponsiveness, the recruitment of neutrophils, and the expression of proinflammatory cytokines, such as IL-6 and TNF-α. In addition, Prmt2 loss of function also altered the nuclear accumulation of NF-κB in stimulated macrophages. Prmt2 should be considered as a new member of the NF-κB pathway controlling LPS-induced inflammatory and lung responses in a dosage-dependent manner, certainly through regulating nuclear accumulation of NF-κB as shown already in fibroblasts.  相似文献   

15.
目的:探讨豚鼠支气管哮喘模型中共激活因子相关的精氨酸甲基转移酶1(coactivator-associated arginine methyltransferase1,CARM1)和核因子-B(NF-B)在气道和肺组织的表达变化及地塞米松的干预作用。方法:36只白色雄性豚鼠随机分为正常对照组、哮喘组和地塞米松治疗组。卵清蛋白致敏并激发后采用间接免疫荧光法检测气道和肺组织中CARM1和NF-B(P65)的表达,探讨其在哮喘中可能的作用机制。结果:CARM1和NF-κB(P65)在对照组、哮喘组及地塞米松治疗组均有阳性表达,主要在支气管-终末细支气管上皮细胞和肺组织细胞胞核表达。CARM1和NF-κB(P65)在哮喘组表达水平为([123.75±41.55)和(126.92±46.74)],在地塞米松治疗组表达水平为([84.33±27.70)和(85.00±29.22)],均高于对照组的([51.67±8.29)和(52.75±9.07)个/400倍视野],地塞米松治疗组表达较哮喘组低。结论:CARM1和NF-B(P65)在哮喘豚鼠气道上皮及肺组织细胞胞核高表达,提示CARM1可能通过增强募集NF-B到相关位点激活NF-B信号转导通路并启动了多种前炎性基因和免疫调节基因的转录激活、诱发哮喘炎症反应。地塞米松可下调CARM1和NF-κB的表达而抑制哮喘炎症反应。  相似文献   

16.
17.
18.
为了探讨丙戊酸钠(valproic acid,VPA)对急性呼吸窘迫综合征(acute respiratory distress syndrome,ARDS)小鼠治疗作用及分子机制,本研究将30只雌性C57BL/6小鼠分为空白组、LPS组、LPS+VPA组,LPS+VPA组小鼠造模前腹腔预注射VPA,以LPS气管内注射诱导ARDS小鼠模型,6 h后检测各组小鼠肺水肿(湿重/干重),检测各组小鼠血液SOD和MDA水平;通过ELISA检测各组小鼠肺泡灌洗液中TNFα和IL-1β水平,Western blotting检测各组小鼠NF-κB p65和p-H2A.X蛋白表达水平。研究结果表明:与空白组相比,LPS组小鼠肺水肿显著升高,与LPS组比较,LPS+VPA组和阳性组小鼠肺水肿显著降低,差异具有统计学意义(p<0.01)。ELISA结果显示,与空白组比较,LPS组小鼠肺组织TNFα和IL-1β含量显著升高,与LPS组比较,LPS+VPA组小鼠肺组织TNFα和IL-1β含量显著降低,差异具有统计学意义(p<0.01)。与空白组比较,LPS组小鼠血液SOD活性显著降低,MDA含量显著升高,与LPS组比较,LPS+VPA组和阳性组小鼠血液SOD活性显著升高,MDA含量显著降低。Western blotting结果显示,与空白组比较,LPS组小鼠肺NF-κB p65和p-H2A.X蛋白表达显著升高,与LPS组比较,LPS+VPA组和阳性组小鼠肺NF-κB p65和p-H2A.X蛋白表达显著降低,差异具有统计学意义(p<0.01)。本研究初步表明:VPA能够抑制NF-κB通路,抑制小鼠氧化应激和炎症反应,保护ARDS小鼠肺组织。  相似文献   

19.
Inflammation induces the NF-κB dependent protein A20 in human renal proximal tubular epithelial cells (RPTEC), which secondarily contains inflammation by shutting down NF-κB activation. We surmised that inducing A20 without engaging the pro-inflammatory arm of NF-κB could improve outcomes in kidney disease. We showed that hepatocyte growth factor (HGF) increases A20 mRNA and protein levels in RPTEC without causing inflammation. Upregulation of A20 by HGF was NF-κB/RelA dependent as it was abolished by overexpressing IκBα or silencing p65/RelA. Unlike TNFα, HGF caused minimal IκBα and p65/RelA phosphorylation, with moderate IκBα degradation. Upstream, HGF led to robust and sustained AKT activation, which was required for p65 phosphorylation and A20 upregulation. While HGF treatment of RPTEC significantly increased A20 mRNA, it failed to induce NF-κB dependent, pro-inflammatory MCP-1, VCAM-1, and ICAM-1 mRNA. This indicates that HGF preferentially upregulates protective (A20) over pro-inflammatory NF-κB dependent genes. Upregulation of A20 supported the anti-inflammatory effects of HGF in RPTEC. HGF pretreatment significantly attenuated TNFα-mediated increase of ICAM-1, a finding partially reversed by silencing A20. In conclusion, this is the first demonstration that HGF activates an AKT-p65/RelA pathway to preferentially induce A20 but not inflammatory molecules. This could be highly desirable in acute and chronic renal injury where A20-based anti-inflammatory therapies are beneficial.  相似文献   

20.
Previous studies have demonstrated expression of Toll-like receptors (TLRs) in the surface epithelium of normal ovaries (OSE) and in epithelial ovarian tumors. Most notably, OSE-derived cancers express TLR4, which activates the nuclear factor-kappa B (NF-κB) signaling cascade as a mediator of inflammatory response. Currently, there is considerable interest in elucidating the role of TLR-mediated signaling in cancers. Nevertheless, the expression of TLRs in granulosa cell tumors (GCTs) of the ovary, and the extent to which GCT expression of TLRs may influence cell-signaling pathways and/or modulate the efficacy of chemotherapeutics, has yet to be determined. In the present study, human GCT lines (COV434 and KGN) were utilized to evaluate expression of functional TLR4. TLR4 is expressed in GCT cell lines and ligation of TLR4 with bacterial lipopolysaccharide (LPS) led to IκB degradation and activation of NF-κB. NF-κB activation was confirmed by nuclear localization of NF-κB p65 following treatment with LPS and the naturally occurring ligand, HSP60. Notably, immunoneutralization of TLR4 blocked nuclear localization, and inhibition of NF-κB signaling attenuated LPS-induced TNFα plus increased doubling time in both cell lines. Contradictory to reports using human OSE cell lines, inhibition of NF-κB signaling failed to sensitize GCT lines to TRAIL or cisplatin. In summary, findings herein are the first to demonstrate a functional TLR-signaling pathway specifically in GCTs, and indicate that in contrast to OSE-derived cancers, inhibition of NF-κB does not sensitize GCTs to TRAIL or cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号