首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human T-cell leukemia virus type 1 (HTLV-1) is etiologically linked with HTLV-1-associated diseases. HTLV-1 proviral load is higher in persons with adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis than in asymptomatic carriers. However there are little data available on the factors controlling HTLV-1 proviral load in carriers. To study the effect of genetic background on HTLV-1 proviral load, we employed a mouse model of HTLV-1 infection that we had established. Here we analyzed nine strains of mice and found there is a great variation of proviral load among mouse strains that is not necessarily dependent on major histocompatibility complex. The antibody response is also different among these strains. To our knowledge, this is the first demonstration of the importance of the genetic background other than major histocompatibility complex controlling the HTLV-1 proviral load.  相似文献   

2.
3.
4.
Guo X  Shen S  Song S  He S  Cui Y  Xing G  Wang J  Yin Y  Fan L  He F  Zhang L 《The Journal of biological chemistry》2011,286(20):18037-18047
The HECT-type ubiquitin ligase (E3) Smad ubiquitination regulatory factor 1 (Smurf1) targets various substrates, including Smad1/5, RhoA, Prickle 1, MEKK2, and JunB for degradation and thereby regulates adult bone formation and embryonic development. Here, we identify the endoplasmic reticulum (ER)-localized Wolfram syndrome protein (WFS1) as a specific degradation substrate of Smurf1. Mutations in the WFS1 gene cause Wolfram syndrome, an autosomal recessive disorder characterized by diabetes mellitus and optic atrophy. WFS1 negatively regulates the ER stress response, and WFS1 deficiency in mice increases ER stress and triggers apoptosis. We show that Smurf1 interacts with WFS1 at the ER and promotes the ubiquitination and proteasomal degradation of WFS1. A C-terminal luminal region in WFS1, including residues 667-700, is involved in this degradation. Wild-type WFS1 as well as a subset of WFS1 mutants that include this degron region are susceptible to Smurf1-mediated degradation. By contrast, pathophysiological deletion mutants of WFS1 lacking the degron, such as W648X, Y660X, and Q667X, are resistant to degradation by Smurf1. Depletion of Smurf1 by RNA interference results in increased WFS1 and decreased ATF6α levels. Furthermore, we show that ER stress induces Smurf1 degradation and WFS1 up-regulation. These findings reveal for the first time that Smurf1 targets an ER-localized protein for degradation and that Smurf1 is regulated by ER stress.  相似文献   

5.
Processing of the human immunodeficiency virus type 1 (HIV-1) Gag and Gag-Pro-Pol polyproteins by the HIV-1 protease (PR) is essential for the production of infectious particles. However, the determinants governing the rates of processing of these substrates are not clearly understood. We studied the effect of substrate context on processing by utilizing a novel protease assay in which a substrate containing HIV-1 matrix (MA) and the N-terminal domain of capsid (CA) is labeled with a FlAsH (fluorescein arsenical hairpin) reagent. When the seven cleavage sites within the Gag and Gag-Pro-Pol polyproteins were placed at the MA/CA site, the rates of cleavage changed dramatically compared with that of the cognate sites in the natural context reported previously. The rate of processing was affected the most for three sites: CA/spacer peptide 1 (SP1) (≈10-fold increase), SP1/nucleocapsid (NC) (≈10-30-fold decrease), and SP2/p6 (≈30-fold decrease). One of two multidrug-resistant (MDR) PR variants altered the pattern of processing rates significantly. Cleavage sites within the Pro-Pol region were cleaved in a context-independent manner, suggesting for these sites that the sequence itself was the determinant of rate. In addition, a chimera consisting of SP1/NC P4-P1 and MA/CA P1'-P4' residues (ATIM↓PIVQ) abolished processing by wild type and MDR proteases, and the reciprocal chimera consisting of MA/CA P4-P1 and SP1/NC P1'-4' (SQNY↓IQKG) was cleaved only by one of the MDR proteases. These results suggest that complex substrate interactions both beyond the active site of the enzyme and across the scissile bond contribute to defining the rate of processing by the HIV-1 PR.  相似文献   

6.
Human T-lymphotropic virus type 1 (HTLV-1) is a causative agent of adult T cell leukemia/lymphoma and a variety of inflammatory disorders. HTLV-1 encodes a nuclear localizing protein, p30, that selectively alters viral and cellular gene expression, activates G(2)-M cell cycle checkpoints, and is essential for viral spread. Here, we used immunoprecipitation and affinity pulldown of ectopically expressed p30 coupled with mass spectrometry to identify cellular binding partners of p30. Our data indicate that p30 specifically binds to cellular ATM (ataxia telangiectasia mutated) and REGγ (a nuclear 20 S proteasome activator). Under conditions of genotoxic stress, p30 expression was associated with reduced levels of ATM and increased cell survival. Knockdown or overexpression of REGγ paralleled p30 expression, suggesting an unexpected enhancement of p30 expression in the presence of REGγ. Finally, size exclusion chromatography revealed the presence of p30 in a high molecular mass complex along with ATM and REGγ. On the basis of our findings, we propose that HTLV-1 p30 interacts with ATM and REGγ to increase viral spread by facilitating cell survival.  相似文献   

7.
The C2-WW-HECT-type ubiquitin ligases Smurf1 and Smurf2 play a critical role in embryogenesis and adult bone homeostasis via regulation of bone morphogenetic protein, Wnt, and RhoA signaling pathways. The intramolecular interaction between C2 and HECT domains autoinhibits the ligase activity of Smurf2. However, the role of the Smurf1 C2 domain remains elusive. Here, we show that the C2-HECT autoinhibition mechanism is not observed in Smurf1, and instead its C2 domain functions in substrate selection. The Smurf1 C2 domain exerts a key role in localization to the plasma membrane and endows Smurf1 with differential activity toward RhoA versus Smad5 and Runx2. Crystal structure analysis reveals that the Smurf1 C2 domain possesses a typical anti-parallel β-sandwich fold. Examination of the sulfate-binding site analysis reveals two key lysine residues, Lys-28 and Lys-85, within the C2 domain that are important for Smurf1 localization at the plasma membrane, regulation on cell migration, and robust ligase activity toward RhoA, which further supports a Ca(2+)-independent localization mechanism for Smurf1. These findings demonstrate a previously unidentified role of the Smurf1 C2 domain in substrate selection and cellular localization.  相似文献   

8.
Iron-sulfur proteins play an essential role in a variety of biologic processes and exist in multiple cellular compartments. The biogenesis of these proteins has been the subject of extensive investigation, and particular focus has been placed on the pathways that assemble iron-sulfur clusters in the different cellular compartments. Iron-only hydrogenase-like protein 1 (IOP1; also known as nuclear prelamin A recognition factor like protein, or NARFL) is a human protein that is homologous to Nar1, a protein in Saccharomyces cerevisiae that, in turn, is an essential component of the cytosolic iron-sulfur protein assembly pathway in yeast. Previous siRNA-induced knockdown studies using mammalian cells point to a similar role for IOP1 in mammals. In the present studies, we pursued this further by knocking out Iop1 in Mus musculus. We find that Iop1 knock-out results in embryonic lethality before embryonic day 10.5. Acute, inducible global knock-out of Iop1 in adult mice results in lethality and significantly diminished activity of cytosolic aconitase, an iron-sulfur protein, in liver extracts. Inducible knock-out of Iop1 in mouse embryonic fibroblasts results in diminished activity of cytosolic but not mitochondrial aconitase and loss of cell viability. Therefore, just as with knock-out of Nar1 in yeast, we find that knock-out of Iop1/Narfl in mice results in lethality and defective cytosolic iron-sulfur cluster assembly. The findings demonstrate an essential role for IOP1 in this pathway.  相似文献   

9.
A number of viruses, when they bind to cells, activate intracellular signals that facilitate post-binding steps of infection. To determine if retroviruses activate intracellular signaling, we transduced HeLa cells with amphotropic retroviruses produced by TelCeB6 cells and examined cell lysates for activated Rac1. We found that retroviruses activate Rac1. Rac1 activation was blocked when cells were depleted of cholesterol, cultured in suspension, or incubated with an anti-beta(1) integrin antibody, and when viruses were treated with heparinase III. Retrovirus activation of Rac1 did not require the amphotropic envelope protein. Gene transfer was reduced 2.4-fold when viruses were treated with heparinase III, but did not change when cells were transduced in the presence of function-blocking anti-beta(1) integrin antibodies. The implications of these findings with respect to retrovirus-cell interactions are discussed.  相似文献   

10.
Conjugation of Nedd8 to a cullin protein, termed neddylation, is an evolutionarily conserved process that functions to activate the cullin-RING family E3 ubiquitin ligases, leading to increased proteasomal degradation of a wide range of substrate proteins. Recent emerging evidence demonstrates that cellular neddylation requires the action of Dcn1, which, in humans, consists of five homologues designated as hDCNL1-5. Here we revealed a previously unknown mechanism that regulates hDCNL1. In cultured mammalian cells ectopically expressed hDCNL1 was mono-ubiquitinated predominantly at K143, K149, and K171. Using a classical chromatographic purification strategy, we identified Nedd4-1 as an E3 ligase that can catalyze mono-ubiquitination of hDCNL1 in a reconstituted ubiquitination system. In addition, the hDCNL1 N-terminal ubiquitin-binding domain is necessary and sufficient to mediate mono-ubiquitination. Finally, fluorescence microscopic and subcellular fractionation analyses revealed a role for mono-ubiquitination in driving nuclear export of hDCNL1. Taken together, these results suggest a mono-ubiquitination-mediated mechanism that governs nuclear-cytoplasmic trafficking of hDCNL1, thereby regulating hDCNL1-dependent activation of the cullin-RING E3 ubiquitin ligases in selected cellular compartments.  相似文献   

11.
The PPPY motif in the matrix (MA) domain of human T-cell leukemia virus type 1 (HTLV-1) Gag associates with WWP1, a member of the HECT domain containing family of E3 ubiquitin ligases. Mutation of the PPPY motif arrests particle assembly at an early stage and abolishes ubiquitination of MA. Similar effects are seen when Gag is expressed in the presence of a truncated form of WWP1 that lacks the catalytically active HECT domain (C2WW). To understand the role of ubiquitination in budding, we mutated the four lysines in MA to arginines and identified lysine 74 as the unique site of ubiquitination. Virus-like particles produced by the K74R mutant did not contain ubiquitinated MA and showed a fourfold reduction in the release of infectious particles. Furthermore, the K74R mutation rendered assembly hypersensitive to C2WW inhibition; K74R Gag budding was inhibited at significantly lower levels of expression of C2WW compared with wild-type Gag. This finding indicates that the interaction between Gag and WWP1 is required for functions other than Gag ubiquitination. Additionally, we show that the PPPY mutant Gag exerts a strong dominant-negative effect on the budding of wild-type Gag, further supporting the importance of recruitment of WWP1 to achieve particle assembly.  相似文献   

12.
WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) plays an important role in the proliferation of tumor cells and the lifespan of Caenorhabditis elegans. However, the role of WWP1 in cellular senescence is still unknown. Here, we show that the expression patterns of p27(Kip1) and WWP1 are inversely correlated during cellular senescence. Moreover, the overexpression of WWP1 delayed senescence, whereas the knockdown of WWP1 led to premature senescence in human fibroblasts. Furthermore, we demonstrate that WWP1 repressed endogenous p27(Kip1) expression through ubiquitin-proteasome-mediated degradation. Additionally, WWP1 had a strong preference for catalyzing the Lys-48-linked polyubiquitination of p27(Kip1) in vitro. Finally, we demonstrate that WWP1 markedly inhibited the replicative senescence induced by p27(Kip1) by promoting p27(Kip1) degradation. Therefore, our study provides a new molecular mechanism for the regulation of cellular senescence.  相似文献   

13.
The viral infectivity factor (Vif), one of the six HIV-1 auxiliary genes, is absolutely necessary for productive infection in primary CD4-positive T lymphocytes and macrophages. Vif overcomes the antiviral function of the host factor APOBEC3G. To better understand this mechanism, it is of interest to characterize cellular proteins that interact with Vif and may regulate its function. Here, we show that Vif binds to hNedd4 and AIP4, two HECT E3 ubiquitin ligases. WW domains present in those HECT enzymes contribute to the binding of Vif. Moreover, the region of Vif, which includes amino acids 20-128 and interacts with the hNedd4 WW domains, does not contain proline-rich stretches. Lastly, we show that Vif undergoes post-translational modifications by addition of ubiquitin both in cells overexpressing Vif and in cells expressing HIV-1 provirus. Vif is mainly mono-ubiquitinated, a modification known to address the Gag precursor to the virus budding site.  相似文献   

14.
Histone modifications and DNA methylation represent two layers of heritable epigenetic information that regulate eukaryotic chromatin structure and gene activity. UHRF1 is a unique factor that bridges these two layers; it is required for maintenance DNA methylation at hemimethylated CpG sites, which are specifically recognized through its SRA domain and also interacts with histone H3 trimethylated on lysine 9 (H3K9me3) in an unspecified manner. Here we show that UHRF1 contains a tandem Tudor domain (TTD) that recognizes H3 tail peptides with the heterochromatin-associated modification state of trimethylated lysine 9 and unmodified lysine 4 (H3K4me0/K9me3). Solution NMR and crystallographic data reveal the TTD simultaneously recognizes H3K9me3 through a conserved aromatic cage in the first Tudor subdomain and unmodified H3K4 within a groove between the tandem subdomains. The subdomains undergo a conformational adjustment upon peptide binding, distinct from previously reported mechanisms for dual histone mark recognition. Mutant UHRF1 protein deficient for H3K4me0/K9me3 binding shows altered localization to heterochromatic chromocenters and fails to reduce expression of a target gene, p16(INK4A), when overexpressed. Our results demonstrate a novel recognition mechanism for the combinatorial readout of histone modification states associated with gene silencing and add to the growing evidence for coordination of, and cross-talk between, the modification states of H3K4 and H3K9 in regulation of gene expression.  相似文献   

15.
The human T cell leukemia virus type 1 (HTLV-1) Tax is a phosphoprotein, however, the contribution of phosphorylation to Tax activity is unknown. Previous studies have shown that phosphorylation of Tax occurs on serine residue(s), within one tryptic fragment, in response to 4-phorbol-12-myristate-13-acetate, in both mouse and human cells. Studies were conducted in multiple cell lines to identify the specific phosphorylated serines as a prelude to functional analysis. The phosphorylation pattern of Tax was found to be different in 293T and COS-7 cells in comparison with MT-4 and Px-1 cells. However, one tryptic fragment remained consistent in comigration analyses among all cell lines. Using selected Tax serine mutants a tryptic fragment containing a serine at residue 113 believed to be the site of phosphorylation of Tax did not comigrate with the common phosphorylated tryptic fragment. Analysis of selected Tax mutants for ability totrans-activate the cytomegalovirus promoter demonstrated mutation of serine 77 to alanine reducedtrans-activation by 90% compared to wild-type Tax. However, examination of the phosphorylation pattern of the serine 77 mutant demonstrated that it is not the site of phosphorylation. These studies demonstrate the importance of using relevant cell lines to characterize the role of phosphorylation in protein function.  相似文献   

16.
Eukaryotic cells monitor and maintain protein quality through a set of protein quality control (PQC) systems whose role is to minimize the harmful effects of the accumulation of aberrant proteins. Although these PQC systems have been extensively studied in the cytoplasm, nuclear PQC systems are not well understood. The present work shows the existence of a nuclear PQC system mediated by the ubiquitin-proteasome system in the fission yeast Schizosaccharomyces pombe. Asf1-30, a mutant form of the histone chaperone Asf1, was used as a model substrate for the study of the nuclear PQC. A temperature-sensitive Asf1-30 protein localized to the nucleus was selectively degraded by the ubiquitin-proteasome system. The Asf1-30 mutant protein was highly ubiquitinated at higher temperatures, and it remained stable in an mts2-1 mutant, which lacks proteasome activity. The E2 enzyme Ubc4 was identified among 11 candidate proteins as the ubiquitin-conjugating enzyme in this system, and San1 was selected among 100 candidates as the ubiquitin ligase (E3) targeting Asf1-30 for degradation. San1, but not other nuclear E3s, showed specificity for the mutant nuclear Asf1-30, but did not show activity against wild-type Asf1. These data clearly showed that the aberrant nuclear protein was degraded by a defined set of E1-E2-E3 enzymes through the ubiquitin-proteasome system. The data also show, for the first time, the presence of a nuclear PQC system in fission yeast.  相似文献   

17.
The evolutionary rate of the human T-cell lymphotropic virus type-1 (HTLV-1) is considered to be very low, in strong contrast to the related human retrovirus HIV. However, current estimates of the HTLV-1 rate rely on the anthropological calibration of phylogenies using assumed dates of human migration events. To obtain an independent rate estimate, we analyzed two variable regions of the HTLV-1 genome (LTR and env) from eight infected families. Remarkable genetic stability was observed, as only two mutations in LTR (756 bp) and three mutations in env (522 bp) occurred within the 16 vertical transmission chains, including one ambiguous position in each region. The evolutionary rate in HTLV-1 was then calculated using a maximum-likelihood approach that used the highest and lowest possible times of HTLV-1 shared ancestry, given the known transmission histories. The rates for the LTR and env regions were 9.58 x 10(-8)-1.25 x 10(-5) and 7.84 x 10(-7) -2.33 x 10(-5)nucleotide substitutions per site per year, respectively. A more precise estimate was obtained for the combined LTR-env data set, which was 7.06 x 10(-7)-1.38 x 10(-5)substitutions per site per year. We also note an interesting correlation between the occurrence of mutations in HTLV-1 and the age of the individual infected.  相似文献   

18.
Summary The nucleocapsid protein of Moloney murine leukemia virus (NCp10) is a 56-amino acid protein which contains one zinc finger of the CysX2CysX4HisX4Cys form, a highly conserved motif present in most retroviruses and retroelements. At pH5, NCp10 binds one zinc atom and the complexation induces a folding of the CysX2CysX4HisX4Cys box, similar to that observed for the zinc-binding domains of HIV-1 NC protein. The three-dimensional structure of NCp10 has been determined in aqueous solution by 600 MHz 1H NMR spectroscopy. The proton resonances could be almost completely assigned by means of phase-sensitive double-quantum-filtered COSY, TOCSY and NOESY techniques. NOESY spectra yielded 597 relevant structural constraints, which were used as input for distance geometry calculations with DIANA. Further refinement was performed by minimization with the program AMBER, which was modified by introducing a zinc force field. The solution structure is characterized by a well-defined central zinc finger (rmsd of 0.747±0.209 Å for backbone atoms and 1.709±0.187 Å when all atoms are considered), surrounded by flexible N- and C-terminal domains. The Tyr28, Trp35, Lys37, Lys41 and Lys42 residues, which are essential for activity, lie on the same face of the zinc finger, forming a bulge structure probably involved in viral RNA binding. The significance of these structural characteristics for the various biological functions of the protein is discussed, taking into account the results obtained with various mutants.  相似文献   

19.
Quality control of endoplasmic reticulum proteins involves the identification and engagement of misfolded proteins, dislocation of the misfolded protein across the endoplasmic reticulum (ER) membrane, and ubiquitin-mediated targeting to the proteasome for degradation. Ancient ubiquitous protein 1 (AUP1) physically associates with the mammalian HRD1-SEL1L complex, and AUP1 depletion impairs degradation of misfolded ER proteins. One of the functions of AUP1 in ER quality control is to recruit the soluble E2 ubiquitin-conjugating enzyme UBE2G2. We further show that the CUE domain of AUP1 regulates polyubiquitylation and facilitates the interaction of AUP1 with the HRD1 complex and with dislocation substrates. AUP1 localizes both to the ER and to lipid droplets. The AUP1 expression level affects the abundance of cellular lipid droplets and as such represents the first protein with lipid droplet regulatory activity to be linked to ER quality control. These findings indicate a possible connection between ER protein quality control and lipid droplets.  相似文献   

20.
Non-structural protein 1 from influenza A virus, NS1A, is a key multifunctional virulence factor composed of two domains: an N-terminal double-stranded RNA (dsRNA)-binding domain and a C-terminal effector domain (ED). Isolated RNA-binding and effector domains of NS1A both exist as homodimers in solution. Despite recent crystal structures of isolated ED and full-length NS1A proteins from different influenza virus strains, controversy remains over the actual biologically relevant ED dimer interface. Here, we report the biophysical properties of the NS1A ED from H3N2 influenza A/Udorn/307/1972 (Ud) virus in solution. Several lines of evidence, including (15)N NMR relaxation, NMR chemical shift perturbations, static light scattering, and analytical sedimentation equilibrium, demonstrate that Ud NS1A ED forms a relatively weak dimer in solution (K(d) = 90 ± 2 μm), featuring a symmetric helix-helix dimer interface. Mutations within and near this interface completely abolish dimerization, whereas mutations consistent with other proposed ED dimer interfaces have no effect on dimer formation. In addition, the critical Trp-187 residue in this interface serves as a sensitive NMR spectroscopic marker for the concentration-dependent dimerization of NS1A ED in solution. Finally, dynamic light scattering and gel shift binding experiments demonstrate that the ED interface plays a role in both the oligomerization and the dsRNA binding properties of the full-length NS1A protein. In particular, mutation of the critical tryptophan in the ED interface substantially reduces the propensity of full-length NS1A from different strains to oligomerize and results in a reduction in dsRNA binding affinity for full-length NS1A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号