首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distributions of the diameters of skeletal muscle fibres and adipocytes were studied in rainbow trout. The cellularity of perivisceral adipose tissues and subcutaneous ventral and dorsal adipose tissues were characterized more specifically. In these tissues, a population of small adipocytes was distinguishable from larger adipocytes. The same was observed in white muscle. The effects of extrinsic factors (dietary lipid in two different thermal conditions) and intrinsic factors (strains in two different saline conditions, growth hormone) on the long-term response of the cellularity of both muscle and adipose tissues were studied. The effects of thermal environment were tested on fish fed the same ration and the effects of saline environment on fish fed ad libitum. The mean size of white muscle fibres was relatively unaffected by the different treatments tested: genetic origin and dietary lipid in different environmental conditions. There were significant differences in growth rate due to genetic origin and saline environment. The possible involvement of hyperplasia in response to these different factors is discussed. Growth hormone supplementation enhanced the percentage of small diameter fibres indicating a role of this hormone in the control of muscle hyperplastic growth. The mean size of adipose cells was affected only slightly by the different treatments tested. An increase in adipose cell size with aging and lipid content was observed. The percentage of small adipocytes also increased with aging. Thus, it is proposed that the development of adipose tissues, and thus fat retention, both result from the recruitment of new adipocytes and from the increase in size of existing adipocytes. The hyperplastic process contributed significantly to the differences in fat retention due to different treatments tested (strains, thermal and saline environments). When partially substituting fish oils for corn oils in the diet, a large increase in the ventral adipose cell size was seen indicating a potential negative effect of n-6 fatty acids on cell proliferation. Growth hormone treatment, on the contrary, induced a decrease in the size of perivisceral adipocytes. Thus, diet and hormonal status affect adipose cells size through two different metabolic pathways: lipogenesis and lipolysis respectively.  相似文献   

2.
3.
Two groups of transgenic rainbow trout (Oncorhynchus mykiss, Walbaum) have been produced and compared. One group harbored the reporter gene of chloramphenicol acetyltransferase (CAT) associated with mouse immunoglobulin (Ig) promoter/enhancer (pUCL-CAT-E). The other group carried the same reporter gene under the control of the cytomegalovirus promoter/enhancer (pCMV-CAT). Slot blot analysis of DNA from blood cells and other tissues from pUCL-CAT-E fish showed variation of copy number between the major tissues but not between red and white blood cells. Southern blot analysis indicated that multiple copies organized in concatemers were incorporated into the genome. The pCMV-CAT fish had a pronounced expression of CAT in both white and red blood cells. In contrast, activity of CAT was found in the white blood cells of all pUCL-CAT-E fish but not in their red blood cells. Expression in white blood cells was found preferentially in sIg+ cells, indicating that B cells are the major expressors. High expression was also found in spleen and kidney, but the activity found in thymocytes was equal to the background level. Analysis of some major tissues showed high white blood cell expression associated with low tissue expression, except that liver (known to contain lymphoid tissue in fish) was higher. Thus the regulatory elements of the Ig gene from mouse induce a tissue-specific expression in fish.  相似文献   

4.
Arctic char (Salvelinus alpinus) are a fish species ubiquitous to the fresh waters of Arctic region and brook char (Salvelinus fontinalis) are similarly common across the sub-Arctic region of eastern Canada. Populations can be small in numbers, especially farther north thus it is important to develop non-lethal methods of sampling these fish to minimize the invasiveness and impact of scientific research. We examined the stable isotopes of nitrogen and carbon in white muscle, caudal fin, and adipose fin tissues of Arctic char and brook char (S. fontinalis) from northern Quebec and Labrador, Canada. Our results revealed several broad conclusions. First, differences among muscle, caudal fin, and adipose fin tissues were ~1?‰ for freshwater Arctic and brook char. Second, the two species within the same drainage had similar stable isotope levels and tissue differences. Third, anadromous Arctic char show similar, non-significant differences among these tissues for δ15N, but muscle δ13C was highly enriched. Fourth, the stable isotope levels and tissue differences were the same for anadromous Arctic char from two watersheds where char use distinctly different ocean environments. Overall, it appears that caudal fin tissue in particular is a useful surrogate for white muscle δ13C and δ15N levels for Arctic and brook char in this region and thus, a non-lethal collection of a small sample of caudal fin tissue will provide an accurate measure of white muscle isotope levels.  相似文献   

5.
Summary The lipip content and composition of various tissues from three species of nototheniid fish from McMurdo Sound, Antarctic have been examined in relation to their habitat and buoyancy. The pelagic midwater Dissostichus mawsoni is neutrally buoyant. It is rich in lipid which is located subcutaneously, as adipose tissue associated intimately with white muscle, and as lipid droplets within the cells of various tissues. White muscle, red muscle and liver are particularly lipid-rich, although the liver is not positively buoyant. The amount of lipid stored in the white muscle increases towards the centre of buoyancy of the fish. These deposits are documented at the anatomical, histological and ultrastructural levels. Tissues of Pagothenia borchgrevinki contain less lipid than D. mawsoni, but liver, red muscle and white muscle are still very rich in lipid. This species is cryopelagic, that is it spends most of the time in the water column just beneath the surface ice layer. It is not neutrally buoyant, but has a low weight in seawater. The tissues of the benthic Trematomus bernacchii contain only normal levels of lipid. The lipid class compositions of all three species are dominated by triacylglycerol, particularly when lipid contents are high. Serum lipids are an exception in containing high levels of the transport lipid sterol ester. The reason why Antarctic fish use triacylglycerols for buoyancy rather than was esters (as used by many myctophids) or squalene (as used by some sharks) is unclear.  相似文献   

6.
Paradigms of growth in fish   总被引:2,自引:0,他引:2  
Most fish are indeterminate growers with white muscle making up the majority of the acquired bulk. Within the muscle, the myofibrillar fraction accounts for almost two-thirds of the protein synthetic activity, implying that it is accretion of myofibrillar proteins that makes the single most important contribution to fish growth. Fish muscle growth itself is not linear and occurs through a combination of hyperplasia and hypertrophy in post-juvenile stages. Superimposed on periodicity of growth in length and mass can be other phases governed by lunar, reproductive or circannual cycles. Data on fish growth are discussed in the framework of site-specific muscle abundance, metabolic and functional zonation of muscle, proliferation and differentiation of satellite cells and the contribution of myofibrillar proteins. Hormonal control of muscle growth is described against the backdrop of plasma availability of myogens (insulin, IGF-I, growth hormone), distribution and dynamics of their respective receptors, and their interactions. Important contributions of the 'supply side' are discussed with hormones regulating amino acid resorption from the intestine, intestinal growth, liver processing and amino acid uptake by the muscle. Data are also interpreted from metabolic angles, to explain lipolytic and nitrogen-sparing effects of growth hormones, and lipogenic effects of insulin and high protein diets. Finally, special attention is devoted to the multifaceted roles of arginine in fish growth, as precursor, intermediate and hormone secretagogue.  相似文献   

7.
1. Ubiquinone contents were determined in species of marine invertebrates, and in heart, red and white muscle and liver of three species of fish. 2. Three different methods of determination were compared, based on spectrophotometry, reduction and a reaction with the dimethoxy groups of ubiquinone. 3. Using ubiquinone homologues 6-10 prepared from beef heart and commercially available microorganisms (SCP) as standards, ubiquinone 10 was found in all samples. In addition were found minor amounts of Q-9 in samples of saithe heart and red muscle. 4. Less than 10 mg/kg wet wt of ubiquinone was found in the samples of marine invertebrates and in white muscle and liver of the fish samples, with one exception: 40 mg/kg in a sample of mackerel liver. 5. Higher contents of ubiquinone were found in fish heart and red muscle tissues, ranging from 24 to 116 mg/kg wet wt. The ubiquinone contents were comparable in the two tissues. 6. A test on cellular fragments of red muscle tissue of saithe showed that the ubiquinone was concentrated in the mitochondria fraction.  相似文献   

8.
In studying the whole-body response of chinook salmon (Oncorhynchus tshawytscha) to various stressors, we found that 5-hour exposure to elevated temperature (mean 21.6°C; + 10.6°C over ambient) induced a marked increase in Hsp90 messenger RNA accumulation in heart, brain, gill, muscle, liver, kidney, and tail fin tissues. The most vital tissues (heart, brain, gill, and muscle) showed the greatest Hsp90-mRNA response, with heart tissue increasing approximately 35-fold. Heat shock induced no increase in plasma cortisol. In contrast, a standard handling challenge induced high plasma cortisol levels, but no elevation in Hsp90 mRNA in any tissue, clearly separating the physiological and cellular stress responses. We saw no increase either in tissue Hsp90 mRNA levels or in plasma cortisol concentrations after exposing the fish to seawater overnight. Received October 1, 1999; accepted January 21, 2000  相似文献   

9.
生长激素mRNA在蓝太阳鱼垂体外组织中的表达分布   总被引:3,自引:0,他引:3  
应用半定量RT PCR方法和Southern杂交技术,系统地研究了生长激素(GH)基因在蓝太阳鱼垂体外组织中的表达情况。在建立检测蓝太阳鱼GHmRNA表达的半定量RT PCR扩增条件之后,分别对蓝太阳鱼雄性幼鱼(6月龄)和雄性成鱼(1年龄)的12个组织部位中GHmRNA的表达进行了检测。结果表明,除了在垂体之外,还在肌肉、性腺、鳃、心脏、脑、肾脏6个组织检测到GHmRNA的表达,但各组织间的表达水平存在差异,而在脾脏、肝脏、胃3个组织未检测到表达;肌肉组织中的表达水平从幼鱼到成鱼后明显提高,同时观察到在幼鱼和成鱼的性腺组织中存在着较高水平的表达。本研究表明,GH基因在蓝太阳鱼的垂体外组织中存在着广泛的表达,由此提示,蓝太阳鱼GH可能以旁分泌或自分泌的方式对其生长繁殖起着重要的作用。  相似文献   

10.
The fibroblast growth factors (FGFs) play key roles in controlling tissue growth, morphogenesis, and repair in animals. We have cloned a novel member of the FGF family, designated FGF-18, that is expressed primarily in the lungs and kidneys and at lower levels in the heart, testes, spleen, skeletal muscle, and brain. Sequence comparison indicates that FGF-18 is highly conserved between humans and mice and is most homologous to FGF-8 among the FGF family members. FGF-18 has a typical signal sequence and was glycosylated and secreted when it was transfected into 293-EBNA cells. Recombinant murine FGF-18 protein (rMuFGF-18) stimulated proliferation in the fibroblast cell line NIH 3T3 in vitro in a heparan sulfate-dependent manner. To examine its biological activity in vivo, rMuFGF-18 was injected into normal mice and ectopically overexpressed in transgenic mice by using a liver-specific promoter. Injection of rMuFGF-18 induced proliferation in a wide variety of tissues, including tissues of both epithelial and mesenchymal origin. The two tissues which appeared to be the primary targets of FGF-18 were the liver and small intestine, both of which exhibited histologic evidence of proliferation and showed significant gains in organ weight following 7 (sometimes 3) days of FGF-18 treatment. Transgenic mice that overexpressed FGF-18 in the liver also exhibited an increase in liver weight and hepatocellular proliferation. These results suggest that FGF-18 is a pleiotropic growth factor that stimulates proliferation in a number of tissues, most notably the liver and small intestine.  相似文献   

11.
Soluble, specific binding protein(s) for growth hormone (GH) have been identified and partially characterized in high-speed cytosolic preparations from a number of rabbit tissues. The binding of 125I-labelled human GH to proteins in liver, heart, adipose tissue, skeletal muscle and kidney cytosols was dependent on time and cytosolic protein concentration. By Scatchard analysis, the binding affinities (KA: (2-7) X 10(9) M-1) were somewhat higher than those generally reported for membrane GH receptors. The binding proteins had a greater specificity for somatotrophic hormones than lactogenic hormones, although the kidney appeared to have, in addition, a lactogen-binding protein. By gel filtration, the Mr of the cytosolic GH-binding protein was approximately 100 000 in all tissues. None of the binding proteins was detectable by the poly(ethylene glycol) precipitation method used widely for soluble hormone receptors. The cytosolic GH-binding proteins also cross-reacted with a monoclonal antibody to the rabbit liver membrane GH receptor. These results indicate the ubiquitous presence of apparently naturally soluble GH-binding proteins in the cytosolic fractions of several tissues in the rabbit. Of great interest is their presence in muscle, where GH receptors or binding proteins have not previously been detected, despite muscle being recognized as a classical GH target tissue.  相似文献   

12.
13.
Mechanical load is an important factor in the differentiation of cells and tissues. To investigate the effects of increased mechanical load on development of muscle and bone, zebrafish were subjected to endurance swim training for 6 h/day for 10 wk starting at 14 days after fertilization. During the first 3 wk of training, trained fish showed transiently increased growth compared with untrained (control) fish. Increased expression of proliferating cell nuclear antigen suggests that this growth is realized in part through increased cell proliferation. Red and white axial muscle fiber diameter was not affected. Total cross-sectional area of red fibers, however, was increased. An improvement in aerobic muscle performance was supported by an increase in myoglobin expression. At the end of 10 wk of training, heart and axial muscle showed increased expression of the muscle growth factor myogenin and proliferating cell nuclear antigen, but there were major differences between cardiac and axial muscle. In axial muscle, expression of the "slow" types of myosin and troponin C was increased, together with expression of erythropoietin and myoglobin, which enhance oxygen transport, indicating a shift toward a slow aerobic phenotype. In contrast, the heart muscle shifts to a faster phenotype but does not become more aerobic. This suggests that endurance training differentially affects heart and axial muscle.  相似文献   

14.
Haddock (Melanogrammus aeglefinus) is a gadoid fish species that deposits dietary lipid mainly in the liver. The fatty acid (FA) beta-oxidation activity of various tissues was evaluated in juvenile haddock fed graded levels of lipid. The catabolism of a radiolabelled FA, [1-(14)C]palmitoyl-CoA, through peroxisomal and mitochondrial beta-oxidation was determined in the liver, red and white muscle of juvenile haddock fed 12, 18 and 24% lipid in the diet. There was no significant increase in the mitochondrial or peroxisomal beta-oxidation activity in the tissues tested as the dietary lipid level increased from 12 to 24%. Peroxisomes accounted for 100% of the beta-oxidation observed in the liver, whereas mitochondrial beta-oxidation dominated in the red (91%) and white muscle (97%) of juvenile haddock. Of the tissues tested, red muscle possessed the highest specific activity for beta-oxidation expressed on a per mg protein or per g wet weight basis. However, white muscle, which forms over 50% of the body mass in gadoid fish was the most important tissue in juvenile haddock for overall FA catabolism. The total lipid and FA composition of these tissues were also determined. This study confirmed that the liver was the major lipid storage organ in haddock. The hepatosomatic index (HSI; 10.0-15.2%) and lipid (73.8-79.3% wet wt.) in the liver increased significantly as dietary lipid was increased from 12 to 24% lipid. There was no significant increase in the lipid composition of the white muscle (0.8% wet wt.), red muscle (1.9% wet wt.) or heart (2.5% wet wt.).  相似文献   

15.
Irisin was first identified in skeletal muscle cells. It is an exercise protein that is secreted into the circulation; it causes conversion of white adipose tissue to brown adipose tissue. We investigated irisin immunoreactivity in mole rat (Spalax leucodon) tissues. We examined cerebellum, pituitary, heart, liver, pancreas, spleen, uterus, kidney and striated muscle in female adult mole rats. Tissues were processed, embedded in paraffin, sectioned at 5 μm and stained immunohistochemically for irisin. Irisin immunostaining was detected in the cytoplasm of stained cells; the cytoplasm of Purkinje cells was unstained. We found that irisin may be synthesized in many tissues. The function of locally synthesized irisin currently is unknown.  相似文献   

16.
17.
The effect of temperature and mass on specific growth rate (G) was examined in spotted wolffish Anarhichas minor of different size classes (ranging from 60 to 1500 g) acclimated at different temperatures (4, 8 and 12° C). The relationship between G and 20S proteasome activity in heart ventricle, liver and white muscle tissue was then assessed in fish acclimated at 4 and 12° C to determine if protein degradation via the proteasome pathway could be imposing a limitation on somatic growth. Cardiac 20S proteasome activity was not affected by acclimation temperature nor fish mass and had no correlation with G. Hepatic 20S proteasome activity was higher at 12° C but did not show any relationship with G. Partial correlation analysis showed that white muscle 20S proteasome activity was negatively correlated to G (partial Pearson's r = ?0·609) but only at cold acclimation temperature (4° C). It is suggested that acclimation to cold temperature involves compensation of the mitochondrial oxidative capacity which would in turn lead to increased production of oxidatively damaged proteins that are degraded by the proteasome pathway and ultimately negatively affects G at cold temperature.  相似文献   

18.
19.
The effect of 21 days of starvation, followed by a period of compensatory growth during refeeding, was studied in juvenile roach Rutilus rutilus during winter and summer, at 4, 20 and 27° C acclimation temperature and at a constant photoperiod (12L : 12D). Although light conditions were the same during summer and winter experiments and fish were acclimated to the same temperatures, there were significant differences in a range of variables between summer and winter. Generally winter fish were better prepared to face starvation than summer fish, especially when acclimated at a realistic cold season water temperature of 4° C. In winter, the cold acclimated fish had a two to three‐fold larger relative liver size with an approximately double fractional lipid content, in comparison to summer animals at the same temperature. Their white muscle protein and glycogen concentration, but not their lipid content, were significantly higher. Season, independent of photoperiod or reproductive cycle, was therefore an important factor that determined the physiological status of the animal, and should generally be taken into account when fish are acclimated to different temperature regimes. There were no significant differences between seasons with respect to growth. Juvenile roach showed compensatory growth at all three acclimation temperatures with maximal rates of compensatory growth at 27° C. The replenishment of body energy stores, which were utilized during the starvation period, was responsible for the observed mass gain at 4° C. The contribution of the different energy resources (protein, glycogen and lipid) was dependent on acclimation temperature. In 20 and 27° C acclimated roach, the energetic needs during food deprivation were met by metabolizing white muscle energy stores. While the concentration of white muscle glycogen had decreased after the fasting period, the concentrations of white muscle lipid and protein remained more or less constant. The mobilization of protein and fat was revealed by the reduced size of the muscle after fasting, which was reflected in a decrease in condition factor. At 20° C, liver lipids and glycogen were mobilized, which caused a decrease both in the relative liver size and in the concentration of these substrates. Liver size was also decreased after fasting in the 4° C acclimated fish, but the substrate concentrations remained stable. This experimental group additionally utilized white muscle glycogen during food deprivation. Almost all measured variables were back at the control level within 7 days of refeeding.  相似文献   

20.
The growth pattern of myotomal red, pink and white muscle and its relation to somatic growth in Caranx malabaricus are described. The growth pattern of red muscle was by an increase in fibre number in early size classes (< 22 cm f.l.) and thereafter mainly by increase in fibre diameter and partly by increase in fibre number. The growth of pink muscle was mainly by an increase in fibre diameter, but in smaller fish an increase in fibre number was also evident. White muscle growth was mainly by an increase in fibre diameter and partly by increase in fibre numbers in fish < 22 cm f.l., but only by an increase in fibre diameter from 22 cm f.l. onwards. Caranx malabaricus is a slow-to-moderate growing species and its fibre growth pattern matches with such somatic growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号