首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Synthetic peptides reproducing the helix‐loop‐helix (HLH) domains of the Id proteins fold into highly stable helix bundles upon self‐association. Recently, we have shown that the replacement of the dipeptide Val‐Ser at the loop–helix‐2 junction with the corresponding O‐acyl iso‐dipeptide leads to a completely unfolded state that only refolds after intramolecular ON acyl migration. Herein, we report on an Id HLH analog based on the substitution of the Pro‐Ser motif at the helix‐1–loop junction with the corresponding O‐acyl iso‐dipeptide. This analog has been successfully synthesized by solid‐phase Fmoc chemistry upon suppression of DKP formation. No secondary structure could be detected for the O‐acyl iso‐peptide before its conversion into the native form by ON acyl shift. These results show that the loop–helix junctions are determinant for the folded/unfolded state of the Id HLH domain. Further, despite the high risk of DKP formation, peptides containing O‐acyl iso‐Pro‐Ser/Thr units are synthetically accessible by Fmoc chemistry. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
The negative regulator of DNA-binding/cell-differentiation Id2 is a small protein containing a central helix-loop-helix (HLH) motif and a C-terminal nuclear export signal (NES). Whereas the former is essential for Id2 dimerization and nuclear localization, the latter is responsible for the transport of Id2 from the nucleus to the cytoplasm. Whereas the isolated Id2 HLH motif is highly helical, large C-terminal Id2 fragments including the NES sequence are either unordered or aggregation-prone. To study the conformational properties of the isolated NES region, we synthesized the Id2 segment 103-124. The latter was insoluble in water and only temporarily soluble in water/alcohol mixtures, where it formed quickly precipitating beta-sheets. Introduction of a positively charged N-terminal tail prevented aggressive precipitation and led to aggregates consisting of long fibrils that bound thioflavin T. These results show an interesting structural aspect of the Id2 NES region, which might be of significance for both protein folding and function.  相似文献   

11.
12.
Electrophysiological studies of wild-type and mutated forms of anthrax protective antigen (PA) suggest that the Phe clamp, a structure formed by the Phe427 residues within the lumen of the oligomeric PA pore, binds the unstructured N-terminus of the lethal factor and the edema factor during initiation of translocation. We now show by electrophysiological measurements and gel shift assays that a single Cys introduced into the Phe clamp can form a disulfide bond with a Cys placed at the N-terminus of the isolated N-terminal domain of LF. These results demonstrate direct contact of these Cys residues, supporting a model in which the interaction of the unstructured N-terminus of the translocated moieties with the Phe clamp initiates N- to C-terminal threading of these moieties through the pore.  相似文献   

13.
We have mutated the redox active C-terminal motif, Gly-Cys-Sec-Gly, of the mammalian selenoprotein thioredoxin reductase (TrxR) to mimic the C-terminal Ser-Cys-Cys-Ser motif of the non-selenoprotein orthologue of Drosophila melanogaster (DmTrxR). The activity of DmTrxR is almost equal to that of mammalian TrxR, which is surprising, because Cys mutants of selenoproteins are normally 1-2 orders of magnitude less active than their selenocysteine (Sec) containing counterparts. It was shown earlier that the flanking Ser residues were important for activating the Cys residues in DmTrxR (Gromer, et.al. (2003) PNAS 100, 12618-12623). However, the "Drosophila mimic" mutant of the mammalian enzyme studied herein had <0.5% activity compared to wild-type. Rapid kinetic studies revealed that all of the redox centers of the mutant were active, but that the C-terminal dithiols were not effective reductants of thioredoxin. The charge-transfer complex of the two-electron reduced enzyme slowly disappeared as the N-terminal dithiols reduced the C-terminal disulfide. In wild-type enzyme, the selenenylsulfide is more difficult to reduce and the charge-transfer complex is more stable. These findings suggest that features in addition to the flanking Ser residues are important for facilitating the high activity of the insect enzyme and that the corresponding features are absent in mammalian TrxR.  相似文献   

14.
The monomer-dimer equilibrium of the glycophorin A (GpA) transmembrane (TM) fragment has been used as a model system to investigate the amino acid sequence requirements that permit an appropriate helix-helix packing in a membrane-mimetic environment. In particular, we have focused on a region of the helix where no crucial residues for packing have been yet reported. Various deletion and replacement mutants in the C-terminal region of the TM fragment showed that the distance between the dimerization motif and the flanking charged residues from the cytoplasmic side of the protein is important for helix packing. Furthermore, selected GpA mutants have been used to illustrate the rearrangement of TM fragments that takes place when leucine repeats are introduced in such protein segments. We also show that secondary structure of GpA derivatives was independent from dimerization, in agreement with the two-stage model for membrane protein folding and oligomerization.  相似文献   

15.
Recently, we have found that partially unfolded lysozyme exerts broad spectrum antimicrobial action in vitro against Gram-negative and Gram-positive bacteria independent of its catalytic activity. In parallel, an internal peptide (residues 98-112) of hen egg white lysozyme, obtained after digestion with clostripain, possessed broad spectrum antimicrobial action in vitro. This internal peptide is part of a helix-loop-helix domain (87-114 sequence of hen lysozyme) located at the upper lip of the active site cleft of lysozyme. The helix-loop-helix (HLH) structures are known motifs commonly found in membrane-active and DNA-binding proteins. To evaluate the contribution of the HLH peptide to the antimicrobial properties of lysozyme, the HLH sequence and its secondary structure derivatives of chicken and human lysozyme were synthesized and tested for antimicrobial activity against several bacterial strains. We found that the full HLH peptide of both chicken and human lysozymes was potently microbicidal against both Gram-positive and Gram-negative bacteria and the fungus Candida albicans. The N-terminal helix of HLH was specifically bactericidal to Gram-positive bacteria, whereas the C-terminal helix was bactericidal to all tested strains. Outer and inner membrane permeabilization studies, as well as measurements of transmembrane electrochemical potentials, provided evidence that HLH peptide and its C-terminal helix domain kill Gram-negative bacteria by crossing the outer membrane via self-promoted uptake and causing damage to the inner membrane through channel formation. The results are discussed in terms of proposed mechanisms for the catalytically independent antimicrobial activity of lysozyme that offer a new strategy for the design of potential antimicrobial drugs in the treatment of infectious diseases.  相似文献   

16.
Wohlrab H  Annese V  Haefele A 《Biochemistry》2002,41(9):3254-3261
The phosphate transport protein (PTP) catalyzes the proton cotransport of phosphate into the mitochondrial matrix. It functions as a homodimer, and thus residues of the phosphate and proton pores are somewhat scattered throughout the primary sequence. With 71 new single mutation per subunit PTPs, all its hydroxyl, basic, and acidic residues have now been replaced to identify these essential residues. We assayed the initial rate of pH gradient-dependent unidirectional phosphate transport activity and the liposome incorporation efficiency (LIE) of these mutants. Single mutations of Thr79, Tyr83, Lys90, Tyr94, and Lys98 inactivate transport. The spacings between these residues imply that they are located along the same face of transmembrane (TM) helix B, requiring an extension of its current model C-terminal domain by 10 residues. This extension superimposes very well onto the shorter bovine PTP helix B, leaving a 15-residue hydrophobic extension of the yeast helix B N-terminus. This is similar to the helix D and F regions of the yeast PTP. Only one transport-inhibiting mutation is located within loops: Ser158Thr in the matrix loop between helices C and D. All other transport-inhibiting mutations are located within the TM helices. Mutations that yield LIEs of <6% are all, except for four, within helices. The four exceptions are Tyr12Ala near the PTP N-terminus and Arg159Ala, Glu163Gln, and Glu164Gln in the loop between helices C and D. The PTP C-terminal segment beyond Thr214 at the N-terminus of helix E has 11 mutations with LIEs >20% and none with LIE <6%. Mutations with LIEs >20% are located near the ends of all the TM helices except TM helix D. Only a few mutations alter PTP structure (LIE) and also affect PTP transport activity. A novel observation is that Ser4Ala blocks the formation of PTP bacterial inclusion bodies.  相似文献   

17.
Kakuta Y  Ishimatsu I  Numata T  Kimura K  Yao M  Tanaka I  Kimura M 《Biochemistry》2005,44(36):12086-12093
Ribonuclease P (RNase P) is a ribonucleoprotein complex involved in the removal of 5' leader sequences from tRNA precursors (pre-tRNA). The human protein Rpp21 is essential for human RNase P activity in tRNA processing in vitro. The crystal structure of Ph1601p from the hyperthermophilic archaeon Pyrococcus horikoshii OT3, the archaeal homologue of Rpp21, was determined using the multiple anomalous dispersion (MAD) method with the aid of anomalous scattering in zinc and selenium at 1.6 A resolution. Ph1601p comprises an N-terminal domain (residues 1-55), a central linker domain (residues 56-79), and a C-terminal domain (residues 80-120), forming an L-shaped structure. The N-terminal domain consists of two long alpha-helices, while the central and C-terminal domains fold in a zinc ribbon domain. The electrostatic potential representation indicates the presence of positively charged clusters along the L arms, suggesting a possible role in RNA binding. A single zinc ion binds the well-ordered binding site that consists of four Cys residues (Cys68, Cys71, Cys97, and Cys100) and appears to stabilize the relative positions of the N- and C-domains. Mutations of Cys68 and Cys71 or Cys97 and Cys100 to Ser destabilize the protein structure, which results in inactivation of the RNase P activity. In addition, site-directed mutagenesis suggests that Lys69 at the central loop and Arg86 and Arg105 at the zinc ribbon domain are strongly involved in the functional activity, while Arg22, Tyr44, Arg65, and Arg84 play a modest role in the activity.  相似文献   

18.
H M Cox  J L Krstenansky 《Peptides》1991,12(2):323-327
The antisecretory potency of NPY and a series of truncated and structural analogues of NPY have been tested upon mucosal preparations of rat small intestine. Single amino acid substitutions, i.e., [Ile34]NPY, [Pro34]NPY, resulted in severe attenuation and loss of biological activity, respectively, and neither peptide affected NPY responses. An agonist order of potency: NPY greater than or equal to [Glu16,Ser18,Ala22,Leu28,31]NPY (ESALL-NPY) greater than [Cys2,Aoc5-24,DCys27]NPY (C2-NPY) greater than [Aoc5-24]NPY greater than [Des-Ser3,Des- Lys4]C2-NPY much greater than [Cys5,Aoc7-20,DCys24]NPY (C5-NPY) greater than equal to [DCys7,Aoc8-17, Cys20]NPY (C7-NPY) greater than [Aoc8-17]NPY greater than or equal to [Ile34]C7-NPY much greater than [Aoc2-27]NPY much greater than [Pro34]C2-NPY was obtained. The use of analogues based upon the tertiary structural model of NPY with varying amounts of N- and C-terminal helical regions removed and replaced with a single 8-aminooctanoic acid residue (Aoc) has allowed us to assess the structural requirements for activation of the regions in close apposition to each other. The polyproline helix, beta-turn and majority of the amphipathic alpha-helix serve a structural role bringing N- and C-terminal residues together for optimal receptor recognition and activation.  相似文献   

19.
C-terminal Src kinase (Csk) takes part in a highly specific, high affinity interaction via its Src homology 3 (SH3) domain with the proline-enriched tyrosine phosphatase PEP in hematopoietic cells. The solution structure of the Csk-SH3 domain in complex with a 25-residue peptide from the Pro/Glu/Ser/Thr-rich (PEST) domain of PEP reveals the basis for this specific peptide recognition motif involving an SH3 domain. Three residues, Ala 40, Thr 42 and Lys 43, in the SH3 domain of Csk specifically recognize two hydrophobic residues, Ile 625 and Val 626, in the proline-rich sequence of the PEST domain of PEP. These two residues are C-terminal to the conventional proline-rich SH3 domain recognition sequence of PEP. This interaction is required in addition to the classic polyproline helix (PPII) recognition by the Csk-SH3 domain for the association between Csk and PEP in vivo. NMR relaxation analysis suggests that Csk-SH3 has different dynamic properties in the various subsites important for peptide recognition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号