首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymic epithelial cells (TECs) are critical for the establishment and maintenance of appropriate microenvironment for the positive and negative selection of thymocytes and the induction of central immune tolerance. Yet, little about the molecular regulatory network on TEC development and function is understood. Here, we demonstrate that MTOR (mechanistic target of rapamycin [serine/threonine kinase]) is essential for proper development and functional maturation of TECs. Pharmacological inhibition of MTOR activity by rapamycin (RPM) causes severe thymic atrophy and reduction of TECs. TEC-specific deletion of Mtor causes the severe reduction of mTECs, the blockage of thymocyte differentiation and output, the reduced generation of thymic regulatory T (Treg) cells and the impaired expression of tissue-restricted antigens (TRAs) including Fabp2, Ins1, Tff3 and Chrna1 molecules. Importantly, specific deletion of Mtor in TECs causes autoimmune diseases characterized by enhanced tissue immune cell infiltration and the presence of autoreactive antibodies. Mechanistically, Mtor deletion causes overdegradation of CTNNB1/Beta-Catenin due to excessive autophagy and the attenuation of WNT (wingless-type MMTV integration site family) signaling in TECs. Selective inhibition of autophagy significantly rescued the poor mTEC development caused by Mtor deficiency. Altogether, MTOR is essential for TEC development and maturation by regulating proliferation and WNT signaling activity through autophagy. The present study also implies that long-term usage of RPM might increase the risk of autoimmunity by impairing TEC maturation and function.  相似文献   

2.
The majority of melanoma cells express detectable levels of HLA class II proteins, and an increased threshold of cell surface class II is crucial for the stimulation of CD4+ T cells. Bryostatin-1, a protein kinase C (PKC) activator, has been considered as a potent chemotherapeutic agent in a variety of in vitro tumor models. Little is known about the role of bryostatin-1 in HLA class II Ag presentation and immune activation in malignant tumors, especially in melanoma. In this study, we show that bryostatin-1 treatment enhances CD4+ T cell recognition of melanoma cells in the context of HLA class II molecules. We also show that bryostatin-1 treatment of melanoma cells increases class II protein levels by upregulating the class II transactivator (CIITA) gene. Flow cytometry and confocal microscopic analyses revealed that bryostatin-1 treatment upregulated the expression of costimulatory molecules (CD80 and CD86) in melanoma cells, which could prolong the interaction of immune cells and tumors. Bryostatin-1 also induced cellular differentiation in melanoma cells, and reduced tumorigenic factors such as pro-cathepsins and matrix-metalloproteinase-9. These data suggest that bryostatin-1 could be used as a chemo-immunotherapeutic agent for reducing tumorigenic potential of melanoma cells while enhancing CD4+ T cell recognition to prevent tumor recurrence.  相似文献   

3.
CD25(+)CD4(+) regulatory T cells suppress immune responses and are believed to play roles in preventing autoimmune diseases. However, the mechanism(s) underlying the suppression and the regulation of their homeostasis remain to be elucidated. Here we show that these regulatory T cells downregulated CD25(-)CD4(+) T-cell-mediated production of IL-12 from antigen-presenting cells, which can act as a growth factor for CD25(-)CD4(+) T cells. We further found that CD25(+)CD4(+) T cells, despite their well-documented "anergic" nature, proliferate significantly in vitro only when CD25(-)CD4(+) T cells are present. Notably, this proliferation was strongly dependent on IL-2 and relatively independent of IL-12. Thus, CD25(+)CD4(+) T cells suppress CD25(-)CD4(+) T-cell responses, at least in part, by inhibiting IL-12 production while they themselves can undergo proliferation with the mediation of CD25(-)CD4(+) T cells in vitro. These results offer a novel negative feedback system involving a tripartite interaction among CD25(+)CD4(+) and CD25(-)CD4(+) T cells, and APCs that may contribute to the termination of immune responses.  相似文献   

4.
It has been demonstrated that prolonged graft survival can be achieved through inhibiting the activation of T cells, and addition of soluble CTLA4Ig and OX40Ig proteins to mixed lymphocyte reactions can effectively inhibit T cell proliferation. To explore the potential of this type of treatment in xenotransplantation, we infected streptozotocin-induced diabetic BalB/c mice (H-2d) (200 mg/kg, IV) with 5×108 pfu AdCTLA4Ig-IRES-OX40Ig on day 1 before islets transplantation through the tail vein. The results showed that this treatment prolonged the islet xenografts survival significantly. The reaction to exogenous glucose stimulation was normal and the cytokine secretion of the type Th1 cells was inhibited. The AdCTLA4Ig-IRES-OX40Ig-mediated treatment effectively induced the T cells into anergy and the Th1/Th2 cells into deviation. These results strongly supported the therapeutic potential of blockade of costimulation by Ad-CTLA4Ig-IRES-OX40Ig genes transfer in inducing the organ transplantation tolerance.  相似文献   

5.
Targeted molecular therapies inhibit proliferation and survival of cancer cells but may also affect immune cells. We have evaluated the effects of Sirolimus and Sorafenib on proliferation and survival of lymphoid cell subsets. Both drugs were cytotoxic to CD4+CD25high T cells, and were growth inhibitory for CD4+ and CD8+ T cells. Cytotoxicity depended on CD3/CD28 stimulation and was detectable within 12 h, with 80–90% of CD4+CD25high cells killed by 72 h. Cell death was due to apoptosis, based on Annexin V and 7AAD staining. Addition of IL-2 prevented the apoptotic response to Sirolimus, potentially accounting for reports that Sirolimus can enhance proliferation of CD4+CD25high cells. These results predict that Sirolimus or Sorafenib would reduce CD4+CD25high cells if administered prior to antigenic stimulation in an immunotherapy protocol. However, administration of IL-2 protects CD4+CD25high T cells from cytotoxic effects of Sirolimus, a response that may be considered in design of therapeutic protocols.  相似文献   

6.
Leptin can enhance thymopoiesis and modulate the T-cell immune response. However, it remains controversial whether these effects correlate with the expression of leptin receptor, ObR. We herein addressed this issue by using in vivo animal models and in vitro culture systems. Leptin treatment in both ob/ob mice and normal young mice induced increases of CD4 SP thymocytes in thymus and CD4 T cells in the periphery. Interestingly, expression of the long form ObR was significantly restricted to DN, DP and CD4 SP, but not CD8 SP thymocytes. Moreover, in the reaggregated DP thymocyte cultures with leptin plus TSCs, leptin profoundly induced differentiation of CD4 SP but not CD8 SP thymocytes, suggesting that the effects of leptin on thymocyte differentiation might be closely related to the expression of leptin receptor in developing thymocytes. Surprisingly, ObR expression was markedly higher in peripheral CD4 T cells than that in CD8 T cells. Furthermore, leptin treatment with or without IL-2 and PHA had preferential effects on cell proliferation of CD4 T cells compared to that of CD8 T cells. Collectively, these data provide evidence that the effects of leptin on differentiation and proliferation of CD4 T cells might be closely related to the expression of leptin receptor.  相似文献   

7.
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS.  相似文献   

8.
GM-CSF is believed to be an essential factor for growth and differentiation of myeloid dendritic cells (DC). Employing a low-density fraction of rat bone marrow cells, we attempted to generate DC with human Flt-3/Flk-2 and IL-6. In this culture system, typical DC gradually appeared without exogenous GM-CSF supplement. Phenotypes and functions of the DC were examined. Evidence provided that the most efficient long-term outgrowth of DC progenitors was obtained by GM-CSF independent culture systems with the aid of Flt3/Flk-2 and IL-6, not with c-kit ligand and IL-6. Furthermore, CD103 (OX-62), which is widely used for rat DC separation, was found to be insufficient for enriching DC, due to the down-regulation of the marker. However, the most efficient selection of rat DC was made by CD161a (NKR-P1A), a C-type lectin family. The GM-CSF independent DC was functionally active in vitro as well as in vivo assays.  相似文献   

9.
10.
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are considered to be essential for tumor maintenance, recurrence and metastasis. Therefore, eradication of CSCs/CICs is essential to cure cancers. However, the molecular mechanisms of CSCs/CICs are still elusive. In this study, we investigated the molecular mechanism of the cell growth of oral CSCs/CICs. Oral CSCs/CICs were isolated as aldehyde dehydrogenase 1 bright (ALDH1br) cells by the ALDEFLUOR assay. Small proline-rich protein-1B (SPRR1B) gene was shown to be overexpressed in ALDH1br cells by a cDNA microarray and RT-PCR. SPRR1B was shown to have a role in cell growth and maintenance of ALDH1br cells by SPRR1B overexpression and knockdown experiments. To elucidate the molecular mechanism by which SPRR1B regulates cell growth, further cDNA microarray analysis was performed using SPRR1B-overexpressed cells and cells with SPRR1B knocked down by siRNA. Expression of the tumor suppressor gene Ras association domain family member 4 (RASSF4) was found to be suppressed in SPRR1B-overexpressed cells. On the other hand, the expression of RASSF4 was enhanced in cells in which SPRR1B expression was knocked down by SPRR1B-specific siRNA. RASSF4 has an RA (Ras association) domain, and we thus hypothesized that RASSF4 modulates the MAP kinase signal downstream of the Ras signal. MAP kinase signal was activated in SPRR1B-overexpressed cells, whereas the signal was suppressed in SPRR1B knocked down cells. Taken together, the results indicate that the expression of SPRR1B is upregulated in oral CSCs/CICs and that SPRR1B has a role in cell growth by suppression of RASSF4.  相似文献   

11.
Cryopreservation of peripheral blood mononuclear cells (PBMC) from animal model studies and clinical trials is utilized as a primary method for long-term storage of PBMC for future in vitro and in vivo applications. The objective of this study was to define the mechanistic pathways involved in cryopreservation-induced apoptosis of CD4+ T-cells in PBMC, and to evaluate a cytokine treatment of the cryopreserved samples to rescue apoptosis for the potential future use of the cryopreserved PBMC. Using cryopreserved PBMC samples isolated from na?ve and Simian immunodeficiency virus (SIV)-infected rhesus macaques as a model, frozen PBMC showed significantly increased levels of apoptosis-induced CD4+ T-cell death compared to fresh PBMC over a 5-day culture period as detected by Annexin V/PI and trypan blue staining. Mechanistic studies using a broad-spectrum caspase inhibitor z-VAD demonstrated a crucial involvement of caspases in cryopreservation-induced apoptosis of CD4+ T-cells. Furthermore, the ability of z-VAD to inhibit both mitochondrial membrane perturbation and apoptotic cell death implicated the involvement of caspase-mediated mitochondrial membrane damage in cryopreservation-induced apoptosis of CD4+ T-cells. Due to their known properties to promote T-cell survival and inhibit apoptosis, we evaluated the ability of IL-2, IL-4, and IL-7 combination cytokine treatment of the cryopreserved cells to rescue apoptosis of the CD4+ T-cells. The cytokine treatment resulted in a significant inhibition (p<0.01) of apoptosis-induced cell death and rescued CD4+ T-cell survival (p<0.01) in the cryopreserved cells. Efficient rescue of cryopreserved CD4+ T-cells has clinical significance in immune function analysis of longitudinal samples and in various long-term protocols requiring cryopreservation, including bone marrow and stem cell transplantation.  相似文献   

12.
We isolated and screened two tumor cell clones DD1 and DG6 with different capacity of metastasis from the same parent cell line, a mouse dendritic cell (DC) sarcoma, using limited dilution method. The genome-wide expressions of DD1 and DG6 cells were detected by Affymetrix's MOE-430A microarray. The expression profiles related with mouse DC development were downloaded from GEO at NCBI and ArrayExpress at EBI database. In order to compare the expression of DC sarcoma and DC developmental arrays which was performed by MG-U74av2, we had screened the best matched probesets between MOE-430A and MG-U74av2 according to the probe identities from Affymetrix technical annotation. After the normalization of 11 housekeeping genes across the 34 arrays (2 DC sarcoma and 32 DC developmental arrays), all these expression profiles were analyzed by the methods of hierarchical clustering, principal component analysis, nearest-neighborhood, and self-organizing maps. The results indicate that expression profiles of DC sarcoma are closer to those of the DC progenitors and hematopoietic stem cells from bone marrow compared with the sorted DCs from spleen. The results support the hypothesis that cancers (tumors or sarcomas) arise from stem cells. It is suggested that the DC sarcomas are more similar to the DC progenitors and hematopoietic stem cells than the relative mature DCs in gene expressions on the large-scale.  相似文献   

13.
Listeria monocytogenes-based vaccines for HER-2/neu are capable of breaking tolerance in FVB/N rat HER-2/neu transgenic mice. The growth of implanted NT-2 tumors, derived from a spontaneously occurring tumor in the FVB/N HER-2/neu transgenic mouse, was significantly slower in these mice following vaccination with a series of L. monocytogenes-based vaccines for HER-2/neu. Mechanisms of T cell tolerance that exist in these transgenic mice include the absence of functional high avidity anti-HER-2/neu CD8+ T cells and the presence of CD4+CD25+ regulatory T cells. The in vivo depletion of these regulatory T cells resulted in the slowing in growth of tumors even without the treatment of mice with an anti-HER-2/neu vaccine. The average avidities of responsive CD8+ T cells to six of the nine epitopes in HER-2/neu we examined, four of which were identified in this study, are shown here to be of a lower average avidity in the transgenic mice versus wild type FVB/N mice. In contrast, the average avidity of CD8+ T cells to three epitopes that showed the lowest avidity in the wild-type mice did not differ between wild type and transgenic mice. This study demonstrates the ability of L. monocytogenes-based vaccines to impact upon tolerance to HER-2/neu in FVB/N HER-2/neu transgenic mice and further defines some of the aspects of tolerance in these mice.  相似文献   

14.
Although CD4+CD25+ Treg (Treg) cells are known to modulate NK cell functions, the modulation mechanism of these cells in cord blood has not been fully clarified. The purpose of this study was to clarify the mechanism whereby cord blood Treg cells modulate cord NK cells. By performing various cultures of purified NK cells with or without autologous Treg cells, diminished inhibitory effects of cord Treg cells towards cord NK cell functions, including activation, cytokine production, and cytotoxicity, were observed. We also observed lower secretion of sTGF-beta1 and lower expression of mTGF-beta1 by cord Treg cells than by adult Treg cells. These data revealed the capability of adult Treg cells to suppress rhIL-2-stimulated NK cell function by TGF-beta1, both membrane-bound and soluble types. The reduced inhibitory capabilities of cord Treg cells compared with adult Treg cells is thought to be due to insufficient expression of TGF-beta1.  相似文献   

15.
Lee EJ  Min HY  Joo Park H  Chung HJ  Kim S  Nam Han Y  Lee SK 《Life sciences》2004,75(23):2829-2839
Stilbenoids, including resveratrol (3,5,4'-trihydroxy-trans-stilbene) which is a naturally occurring phytoalexin abundant in grapes and several plants, have been shown to be active in inhibiting proliferation and inducing apoptosis in human cancer cell lines. Using resveratrol as the prototype, we have synthesized various analogs and evaluated their growth inhibitory effects in cultured human cancer cells. In the present study, we show that one of the stilbenoids, 3,4,5-trimethoxy-4'-bromo-cis-stilbene (BCS), was more effective than its corresponding trans-isomer and resveratrol on the inhibition of cancer cell growth. Prompted by the strong growth inhibitory activity of BCS (IC50; 0.03 microM) compared to its trans-isomer (IC50; 6.36 microM) and resveratrol (IC50; 33.0 microM) in cultured human lung cancer cells (A549), we investigated its mechanism of action. BCS induced arrest at the G2/M phase cell cycle in the early time and subsequently increased in the sub-G1 phase DNA contents in a time-dependent manner, indicating induction of apoptosis. Morphological observation with round-up shape and DNA fragmentation was also revealed the apoptotic phenomena. BCS treatment elevated the expression levels of the pro-apoptotic protein p53, the cyclin-dependent kinase inhibitor p21, and the release of cytochrome c in the cytosol. The down-regulation of checkpoint protein cyclin B1 by BCS was well correlated with the cell cycle arrest at G2/M. These data suggest the potential of BCS to serve as a cancer chemotherapeutic or chemopreventive agent by virtue of arresting the cell cycle and induction of apoptosis of human lung cancer cells.  相似文献   

16.
17.
Mutation R453W in A-type lamins, that are major nuclear envelope proteins, generates Emery-Dreifuss muscular dystrophy. We previously showed that mouse myoblasts expressing R453W-lamin A incompletely exit the cell cycle and differentiate into myocytes with a low level of multinucleation. Here we attempted to improve differentiation by treating these cells with a mixture of PD98059, an extracellular-regulated kinase (ERK) kinase (also known as mitogen-activated kinase, MEK) inhibitor, and insulin-like growth factor-II, an activator of phosphoinositide 3-kinase. We show that mouse myoblasts expressing R453W-lamin A were sensitive to the drug treatment as shown by (i) an increase in multinucleation, (ii) downregulation of proliferation markers (cyclin D1, hyperphosphorylated Rb), (iii) upregulation of myogenin, and (iv) sustained activation of p21 and cyclin D3. However, nuclear matrix anchorage of p21 and cyclin D3 in a complex with hypophosphorylated Rb that is critical to trigger cell cycle arrest and myogenin induction was deficient and incompletely restored by drug treatment. As the turn-over of R453W-lamin A at the nuclear envelope was greatly enhanced, we propose that R453W-lamin A impairs the capacity of the nuclear lamina to serve as scaffold for substrates of the MEK-ERK pathway and for MyoD-induced proteins that play a role in the differentiation process.  相似文献   

18.
Two anticancer agents, LCL85 and photodynamic therapy (PDT) were combined to test whether the combination PDT/LCL85 evokes changes in the sphingolipid (SL) profile and promotes cell death. Treatment of SCCVII mouse squamous carcinoma cells using the silicone phthalocyanine Pc 4 for PDT induced increases in the prodeath global ceramides/dihydroceramides (DHceramides), and no changes in the prosurvival sphingosine-1-phosphate (S1P). In contrast, after LCL85, the levels of most ceramides and DHceramides were reduced, whereas the levels of S1P were increased. After PDT/LCL85 the levels of global ceramides and DHceramides, and of S1P, were restored to resting levels. PDT/LCL85 also enhanced the levels of C18-, C20-, and C20:1-ceramide, and C18-DHceramide. Treatment with PDT, with or without LCL85, led to substantial reductions in sphingosine levels. PDT/LCL85 induced enhanced autophagy and caspase-3 activation. None of the treatments affected short-term viability of cells. In contrast, long-term clonogenic survival was reduced not only after PDT or LCL85, but even more after PDT/LCL85. Overall, our data show that short-term exposure to PDT/LCL85 led to distinct signature effects on the SL profile, enhanced autophagy, and caspase-3 activation without cell death. Long-term exposure to PDT/LCL85 enhanced overall cell killing, supporting translational potential of PDT/LCL85.  相似文献   

19.
The chemokine receptor CXCR2 and its ligands are implicated in the progression of tumours and various inflammatory diseases. Activation of the CXCLs/CXCR2 axis activates multiple signalling pathways, including the PI3K, p38/ERK, and JAK pathways, and regulates cell survival and migration. The CXCLs/CXCR2 axis plays a vital role in the tumour microenvironment and in recruiting neutrophils to inflammatory sites. Extensive infiltration of neutrophils during chronic inflammation is one of the most important pathogenic factors in various inflammatory diseases. Chronic inflammation is considered to be closely correlated with initiation of cancer. In addition, immunosuppressive effects of myeloid-derived suppressor cells (MDSCs) against T cells attenuate the anti-tumour effects of T cells and promote tumour invasion and metastasis. Over the last several decades, many therapeutic strategies targeting CXCR2 have shown promising results and entered clinical trials. In this review, we focus on the features and functions of the CXCLs/CXCR2 axis and highlight its role in cancer and inflammatory diseases. We also discuss its potential use in targeted therapies.  相似文献   

20.
    
《Journal of neurochemistry》2002,83(6):1543-1546
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号