首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cytolytic δ-endotoxin gene from Bacillus thuringiensis subsp. darmstadiensis was amplified from genomic DNA by PCR by using primers designed from the sequence of cyt2Aa1 gene of B. thuringiensis subsp. kyushuensis. DNA sequence analysis revealed an open reading frame translating to a 259-amino acid sequence. The cloned gene was designated cyt2Aa2. This gene was highly expressed in Escherichia coli as inclusion bodies that could be solubilized in 50 mM Na2CO3, pH 10.5. Activation of the solubilized protoxin by proteinase K (1% wt/wt, proteinase K/protoxin) yielded the active fragment of about 23 kDa. Cyt2Aa2 showed high hemolytic activity against sheep erythrocytes (hemolytic end- point 0.25 μg/ml) and was toxic to Culex quinquefasciatus and Aedes aegypti larvae (LC50 0.5–1.0 μg/ml). Received: 27 March 2002 / Accepted: 30 April 2002  相似文献   

2.
A gene designated cyt1Ab1, encoding a 27,490-Da protein, was isolated from Bacillus thuringiensis subsp. medellin (H30 serotype) by using an oligonucleotide probe corresponding to the cyt1Aa1 gene. The sequence of the Cyt1Ab1 protein, as deduced from the sequence of the cyt1Ab1 gene, was 86% identical to that of the Cyt1Aa1 protein and 32% identical to that of the Cyt2Aa1 protein from B. thuringiensis subsp. kyushuensis. The cyt1Ab1 gene was flanked upstream by a p21 gene, in the same orientation, encoding a 21,370-Da protein that showed 84% similarity to the putative chaperone P20 protein from B. thuringiensis subsp. israelensis and downstream, on the opposite strand, by a sequence showing 85% identity to the IS240A insertion sequence. The cyt1Ab1 gene was expressed at a high level in a nontoxic strain of B. thuringiensis subsp. israelensis in which large inclusions of the Cyt1Ab1 protein were produced. Purified Cyt1Ab1 crystals were as hemolytic as those of the Cyt1Aa1 protein and were twice as hemolytic as those from the wild-type strain. Mosquitocidal activity toward Aedes aegypti, Anopheles stephensi, and Culex pipiens larvae was assayed. The toxicity of the Cyt1Ab1 protein was slightly lower than that of the Cyt1Aa1 protein for all three mosquito species, and Cyt1Ab1 was 150, 300, and 800 times less active toward Culex, Anopheles, and Aedes larvae, respectively, than were the native crystals from B. thuringiensis subsp. medellin.  相似文献   

3.
Mosquitocidal Bacillus thuringiensis strains show as a common feature the presence of toxic proteins with cytolytic and hemolytic activities, Cyt1Aa1 being the characteristic cytolytic toxin of Bacillus thuringiensis subsp. israelensis. We have detected the presence of another cyt gene in this subspecies, highly homologous to cyt2An1, coding for the 29-kDa cytolytic toxin from B. thuringiensis subsp. kyushuensis. This gene, designated cyt2Ba1, maps upstream of cry4B coding for the 130-kDa crystal toxin, on the 72-MDa plasmid of strain 4Q2-72. Sequence analysis revealed, as a remarkable feature, a 5' mRNA stabilizing region similar to those described for some cry genes. PCR amplification and Southern analysis confirmed the presence of this gene in other mosquitocidal subspecies. Interestingly, anticoleopteran B. thuringiensis subsp. tenebrionis belonging to the morrisoni serovar also showed this gene. On the other hand, negative results were obtained with the anti-lepidopteran strains B. thuringiensis subsp. kurstaki HD-1 and subsp. aizawai HD-137. Western analysis failed to reveal Cyt2A-related polypeptides in B. thuringiensis subsp. israelensis 4Q2-72. However, B. thuringiensis subsp. israelensis 1884 and B. thuringiensis subsp. tenebrionis did show cross-reactive products, although in very small amounts.  相似文献   

4.
Sun Y  Wei W  Ding X  Xia L  Yuan Z 《Archives of microbiology》2007,188(4):327-332
The association of 20 kb heterologous DNA fragments with the parasporal crystals from native and recombinant Bacillus thuringiensis strains was analyzed, respectively. The cry2Aa10 gene cloned in plasmid pHC39 was transformed into B. thuringiensis subsp. kurstaki strains CryˉB and HD73, producing recombinant strains CryˉB(pHC39) and HD73(pHC39). SDS-PAGE and scanning electron microscopy analyses demonstrated that the recombinant CryˉB(pHC39) produced cuboidal crystals of Cry2Aa10 protoxin, while recombinant HD73(pHC39) produced both bipyramidal crystals of Cry1Ac1 protoxin and cuboidal crystals of Cry2Aa10 protoxin. Bioassay results proved that recombinant HD73(pHC39) showed higher insecticidal activity to Helicoverpa armigera than CryˉB(pHC39). It was found that 20 kb DNA fragments were present in bipyramidal and cuboidal crystals from both native and recombinant strains, and the 20 kb heterologous DNAs contained chromosome-specific and resident large plasmid-borne DNA fragments, suggesting the 20 kb heterologous DNA fragment embodied in crystals came randomly from the bacterial chromosomal and plasmid genome. This was the first investigation devoted exclusively on the origin of 20 kb DNA fragments in the parasporal crystals of B. thuringiensis. The data provides a basis for further investigation of the origin of 20 kb DNAs in the crystals and the interaction of DNA and protoxins.  相似文献   

5.
Cyt1Aa is the major and most active component of the parasporal crystal of the Gram-positive soil entomopathogenic bacterium Bacillus thuringiensis subsp. israelensis. The Cyt1Aa protoxin exhibits some hemolytic and cytolytic activity. However, highly active 22–25 kDa toxins are obtained after proteolysis of Cyt1Aa from both the N- and the C-termini. As shown in this study, preliminary binding of the protoxin to polylamellary liposomes or partial denaturation of Cyt1Aa and further processing by several exogenous proteases yielded short 4.9–11.5 kDa cytolytic peptide fragments of Cyt1Aa. The shortest 51 amino acid peptide was obtained after pre-incubation of Cyt1Aa with SDS and proteolysis with proteinase K. This peptide was purified, identified as the Ile87–Asp137 fragment of Cyt1Aa and was shown to exhibit more than 30 % hemolysis of rabbit erythrocytes.  相似文献   

6.
Using the shuttle vector pBU4, the mosquitocidal toxin gene mtx1 from Bacillus sphaericus strain SSII-1 was introduced into an acrystalliferous strain of B. thuringiensis both individually and in combination with the accessory protein gene p20 and the cytolytic protein gene cyt1Aa from B. thuringiensis subsp. israelensis. Bioassay results indicated that the recombinants B-pMT4(Mtx1) and B-pMT9(Mtx1), both individually containing mtx1, had moderate toxicities to binary toxin susceptible and binary toxin resistant Culex quinquefasciatus larvae during the vegetative growth stage, but that their toxicities declined rapidly during the sporulation phase. The LC50 values were 2.5 and 4.8 mg/ml respectively, against 3-4 instar susceptible and resistant larvae for the final sporulated cultures of recombinants B-pMT9(Mtx1), and little toxicity was detected for B-pMT4(Mtx1). Meanwhile, the recombinant B-pMPX2(Mtx1+Cyt1Aa) expressing Mtx1, P20 alone, and Cyt1Aa in combination had stable toxicities during both the vegetative phase and the sporulation phase, with a LC50 ranging from 0.45-0.58 mg/ml. Furthermore, expression of Cyt1Aa appeared to enhance the activity of Mtx1 to target mosquito larvae, suggesting a synergism between Cyt1Aa and Mtx1 toxins.  相似文献   

7.
We cloned and sequenced a new cytolysin gene from Bacillus thuringiensis subsp. medellin. Three IS240-like insertion sequence elements and the previously cloned cyt1Ab and p21 genes were found in the vicinity of the cytolysin gene. The cytolysin gene encodes a protein 29.7 kDa in size that is 91.5% identical to Cyt2Ba from Bacillus thuringiensis subsp. israelensis and has been designated Cyt2Bc. Inclusions containing Cyt2Bc were purified from the crystal-negative strain SPL407 of B. thuringiensis. Cyt2Bc reacted weakly with antibodies directed against Cyt2Ba and was not recognized by an antiserum directed against the reference cytolysin Cyt1Aa. Cyt2Bc was hemolytic only upon activation with trypsin and had only one-third to one-fifth of the activity of Cyt2Ba, depending on the activation time. Cyt2Bc was also mosquitocidal against Aedes aegypti, Anopheles stephensi, and Culex quinquefasciatus, including strains resistant to the Bacillus sphaericus binary toxin. Its toxicity was half of that of Cyt2Ba on all mosquito species except resistant C. quinquefasciatus.  相似文献   

8.
H K Lee  S S Gill 《Applied microbiology》1997,63(12):4664-4670
A novel mosquitocidal protein gene, cry20Aa, was cloned from Bacillus thuringiensis subsp. fukuokaensis (H-3a: 3d: 3e). The gene product, Cry20Aa, was naturally truncated and had a molecular mass of 86,138 Da. The Cry20Aa protein possessed five conserved sequence blocks, as do most other insecticidal Cry toxins. However, an amino acid comparison of Cry20Aa with other mosquitocidal toxins, including Cry4A, Cry4B, Cry10A, Cry11A, and Cry11B, demonstrated that Cry20Aa was quite different from other toxins except for the conserved blocks. The N terminus of Cry20Aa was, however, homologous to the N termini of Cry4A and Cry10A. Interestingly, an inverted repeat (IR1) sequence in the open reading frame of the cry20Aa gene caused incomplete expression of Cry20Aa. When this internal IR1 sequence was altered with no change of amino acid sequence, acrystalliferous B. thuringiensis cells transformed with cry20Aa gene dramatically produced crystal inclusions. However, the intact 86-kDa Cry20Aa protein is highly labile, and it is rapidly degraded to polypeptides of 56 and 43 kDa. To increase expression of the cry20Aa gene, the p20 chaperonelike protein and the cyt1Aa promoter were utilized. While p20 did not increase Cry20Aa expression or stability, chimeric constructs in which the cry20Aa gene was under control of the cyt1Aa promoter overexpressed the Cry20Aa protein in acrystalliferous B. thuringiensis. The expressed Cry20Aa protein showed larvicidal activity against Aedes aegypti and Culex quinquefasciatus. However, the mosquitocidal activity was low, probably due to rapid proteolysis to inactive 56- and 43-kDa proteins.  相似文献   

9.
The mosquitocidal crystal of Bacillus thuringiensis subsp. darmstadiensis 73-E10-2 was purified, bioassayed against third-instar Aedes aegypti larvae (50% lethal concentration, 7.5 micrograms/ml), and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis, revealing polypeptides of 125, 50, 47, and 28 kilodaltons (kDa). When solubilized and proteolytically activated by insect gut proteases or proteinase K, the crystal was cytotoxic to insect and mammalian cells in vitro and was hemolytic. By using nondenaturing polyacrylamide gel electrophoresis, a polypeptide of 23 kDa, derived from the 28-kDa protoxin, was identified which was hemolytic and cytotoxic to Aedes albopictus, A. aegypti, and Choristoneura fumiferana CF1 insect cell lines. The 23-kDa polypeptide was purified by ion-exchange chromatography and gave 50% lethal dose values of 3.8, 3.3, and 6.9 micrograms/ml against A. albopictus, A. aegypti, and C. fumiferana CF1 cells lines, respectively. Cytotoxicity in vitro was both dose and temperature dependent, with a sigmoidal dose-response curve. The cytotoxicity of the 23-kDa toxin and the solubilized and proteolytically activated delta-endotoxin was inhibited by a range of phospholipids containing unsaturated fatty acids and by triglyceride and diglyceride dispersions. An interaction with membrane phospholipids appears important for toxicity. Polyclonal antisera prepared against the 23-kDa polypeptide did not cross-react with polypeptides in the native crystals of four other mosquitocidal strains.  相似文献   

10.
M Geiser  S Schweitzer  C Grimm 《Gene》1986,48(1):109-118
One of the genes for the entomophatogenic crystal protein of Bacillus thuringiensis (subsp. kurstaki strain HD1) has been cloned in Escherichia coli, and its nucleotide sequence determined completely. The gene is contained within a 4360-bp-long HpaI-PstI DNA restriction fragment and codes for a polypeptide of 1,155 amino acid residues. The protoxin protein has a predicted Mr of 130,625. The E. coli-derived protoxin gene product is biologically active against Heliothis virescens larvae in a biotest assay. Extensive computer comparisons with other published B. thuringiensis subsp. kurstaki strains HD1, HD73, and B. thuringiensis subsp. sotto gene sequences reveal hypervariable regions in the first half of the protoxin coding sequence. These regions are responsible for the biological activity of the protein product of the cloned gene, and may explain the different biological activities of these different protoxins.  相似文献   

11.
在蚊幼虫生活水域里的离中不粘柄菌(Asticcacaulis excentricus,Ae)中已成功表达苏云金芽孢杆菌以色列亚种(Bacillus thuringiensis subsp.israelensis,Bti)杀蚊蛋白基因cry11Aa的基础上,将另一Bti杀蚊蛋白基因cyt1Aa转化入Ae中表达。构建并转化了分别单独含有cyt1Aa基因、及同时含有cry11Aa基因的表达质粒pSODCyt20和pSODCryCyt20,蛋白免疫杂交检测相应的Ae重组子分别表达产生了Cyt1Aa和Cry11Aa蛋白。为了探究Ae(pSODCryCyt20)重组子不能表达cyt1Aa的原因,提取了重组子总RNA、并与同是革兰氏染色阴性的大肠杆菌的总RNA比较,结果显示两者RNA系统显著不同,推测Ae中多个外源基因的表达,可能要求每个基因必需一个启动子。  相似文献   

12.
Aedes aegypti (L.), the main vector of dengue fever in Brazil, has been controlled with the use of massive chemical products, contributing to the development of resistance and decreasing the insect control efficiency. The control of dipterans with bioinsecticides based on Bacillus thuringiensis has been satisfactory, due to the production of insecticidal proteins denominated Cry (crystal), Cyt (cytolytic) toxins and Chi (chitinase), and to the synergistic effects among them. The present work aimed to select B. thuringiensis isolates efficient against A. aegypti larvae. A bacterial collection containing 1,073 isolates of B. thuringiensis, obtained from different locations of Brazilian territory, had the DNA isolated and submitted to PCR amplifications using specific primers for cry4Aa, cry4Ba, cry11Aa, cry11Ba, cyt1Aa, cyt1Ab, cyt2Aa and chi genes. For the LC50 and LC90 determination, the entomopathogenic isolates were evaluated by selective and quantitative bioassays. Only 45 isolates (4.2%) presented amplicons for the cry and cyt genes. The chi gene sequence was detected in 25 (54.3%) of those isolates. From the 45 isolates submitted to the selective bioassays, 13 caused 100% mortality of A. aegypti larvae. The identification of cry, cyt and chi genes of B. thuringiensis and the toxicity analysis on A. aegypti led to the selection of a set of isolates that have the potential to be used in the formulation of new bioinsecticides.  相似文献   

13.
Cry4Ba is a delta-endotoxin produced by Bacillus thuringiensis subsp. israelensis and Cyt2Aa2 is a cytolytic delta-endotoxin produced by B. thuringiensis subsp. darmstadiensis. Cry4Ba produced in Escherichia coli was toxic to Aedes aegypti larvae (LC(50)=140 ng ml(-1)) but virtually inactive to Culex quinquefasciatus larvae. Cyt2Aa2 expressed in E. coli exhibited moderate activity against A. aegypti and C. quinquefasciatus larvae with LC(50) values of 350 and 250 ng ml(-1), respectively. Co-expression of both toxins in E. coli dramatically increased toxicity to both A. aegypti andC. quinquefasciatus larvae (LC(50)=7 and 20 ng ml(-1), respectively). This is the first report to demonstrate that Cry4Ba and Cyt2Aa2 have high synergistic activity against C. quinquefasciatus larvae.  相似文献   

14.
为检测苏云金杆菌辅助蛋白P19和ORF1 ORF2对杀虫晶体蛋白Cyt1Aa表达的影响 ,构建了 5个重组表达质粒。 5个质粒都含有cyt1Aa基因 ,但pT1只含有cyt1Aa基因 ,pT2同时含有p19基因 ,pT3同时含有orf1 orf2串联基因 ,pT4同时含有p19基因和p2 0基因 ,pT5同时含有orf1 orf2串联基因和p2 0基因。将这 5个表达质粒和质粒pWF4 5电转化到苏云金杆菌晶体缺陷型 4Q7中 ,分别获得转化菌株Bt T1、Bt T2、Bt T3、Bt T4、Bt T5和Bt WF4 5。SDS PAGE结果显示 ,菌株Bt T1、Bt T2和Bt T3只产生少量的 2 7kDCyt1Aa蛋白 ,而且部分降解为大约 2 4kD的蛋白。而Bt T4和Bt T5能产生大量的Cyt1Aa蛋白 ,但Bt T4和Bt T5的Cyt1Aa蛋白产量都明显少于Bt WF4 5。电镜观察和生物测定结果表明Bt T4和Bt T5与Bt WF4 5的晶体大小和杀蚊毒力没有显著性差异。研究表明P19和ORF1 ORF2对Cyt1Aa蛋白的合成显示可能有抑制作用。  相似文献   

15.
16.
A novel recombinant Bacillus thuringiensis subsp. israelensis strain that produces the B. sphaericus binary toxin, Cyt1Aa, and Cry11Ba is described. The toxicity of this strain (50% lethal concentration [LC(50)] = 1.7 ng/ml) against fourth-instar Culex quinquefasciatus was higher than that of B. thuringiensis subsp. israelensis IPS-82 (LC(50) = 7.9 ng/ml) or B. sphaericus 2362 (LC(50) = 12.6 ng/ml).  相似文献   

17.
In the same way that cry genes, coding for larvicidal delta endotoxins, constitute a large and diverse gene family, the cyt genes for hemolytic toxins seem to compose another set of highly related genes in Bacillus thuringiensis. Although the occurrence of Cyt hemolytic factors in B. thuringiensis has been typically associated with mosquitocidal strains, we have recently shown that cyt genes are also present in strains with different pathotypes; this is the case for the morrisoni subspecies, which includes strains biologically active against dipteran, lepidopteran, and coleopteran larvae. In addition, while one Cyt type of protein has been described in all of the mosquitocidal strains studied so far, the present study confirms that at least two Cyt toxins coexist in the more toxic antidipteran strains, such as B. thuringiensis subsp. israelensis and subsp. morrisoni PG14, and that this could also be the case for many others. In fact, PCR screening and Western blot analysis of 50 B. thuringiensis strains revealed that cyt2-related genes are present in all strains with known antidipteran activity, as well as in some others with different or unknown host ranges. Partial DNA sequences for several of these genes were determined, and protein sequence alignments revealed a high degree of conservation of the structural domains. These findings point to an important biological role for Cyt toxins in the final in vivo toxic activity of many B. thuringiensis strains.  相似文献   

18.
Bacillus thuringiensis serovar israelensis (B. thuringiensis subsp. israelensis) produces four insecticidal crystal proteins (ICPs) (Cry4A, Cry4B, Cry11A, and Cyt1A). Toxicity of recombinant B. thuringiensis subsp. israelensis strains expressing only one of the toxins was determined with first instars of Tipula paludosa (Diptera: Nematocera). Cyt1A was the most toxic protein, whereas Cry4A, Cry4B, and Cry11A were virtually nontoxic. Synergistic effects were recorded when Cry4A and/or Cry4B was combined with Cyt1A but not with Cry11A. The binding and pore formation are key steps in the mode of action of B. thuringiensis subsp. israelensis ICPs. Binding and pore-forming activity of Cry11Aa, which is the most toxic protein against mosquitoes, and Cyt1Aa to brush border membrane vesicles (BBMVs) of T. paludosa were analyzed. Solubilization of Cry11Aa resulted in two fragments, with apparent molecular masses of 32 and 36 kDa. No binding of the 36-kDa fragment to T. paludosa BBMVs was detected, whereas the 32-kDa fragment bound to T. paludosa BBMVs. Only a partial reduction of binding of this fragment was observed in competition experiments, indicating a low specificity of the binding. In contrast to results for mosquitoes, the Cyt1Aa protein bound specifically to the BBMVs of T. paludosa, suggesting an insecticidal mechanism based on a receptor-mediated action, as described for Cry proteins. Cry11Aa and Cyt1Aa toxins were both able to produce pores in T. paludosa BBMVs. Protease treatment with trypsin and proteinase K, previously reported to activate Cry11Aa and Cyt1Aa toxins, respectively, had the opposite effect. A higher efficiency in pore formation was observed when Cyt1A was proteinase K treated, while the activity of trypsin-treated Cry11Aa was reduced. Results on binding and pore formation are consistent with results on ICP toxicity and synergistic effect with Cyt1Aa in T. paludosa.  相似文献   

19.
Y M Yu  M Ohba    S S Gill 《Applied microbiology》1991,57(4):1075-1081
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

20.
The mosquitocidal crystals of Bacillus thuringiensis subsp. fukuokaensis were isolated and bioassayed against fourth-instar larvae of two mosquito species. The 50% lethal concentration values of the crystals to Aedes aegypti and Culex quinquefasciatus were 4.1 and 2.9 micrograms/ml, respectively. In addition, the solubilized crystals had hemolytic activity; 50 micrograms/ml was the lowest detectable level. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the crystals consisted of polypeptides of 90, 86, 82, 72, 50, 48, 37, and 27 kDa. When the solubilized inclusion was treated with C. quinquefasciatus midgut brush border membrane vesicles or Manduca sexta gut juice, only one major protein was detected. This protein retained mosquitocidal activity but had no detectable hemolytic activity. Immunological analysis of this subspecies and the subspecies israelensis, kyushuensis and darmstadiensis by using polyclonal antisera raised against the whole-crystal protein of B. thuringiensis subsp. fukuokaensis revealed that the proteins in subsp. fukuokaensis are distinct from proteins in the other subspecies because little cross-reaction was observed. Analysis of the plasmid pattern showed that the crystal protein genes are located on a plasmid of 130 MDa. Analysis of plasmid and chromosomal DNA from subsp. fukuokaensis showed little homology to the 72-kDa toxin gene (PG-14) of B. thuringiensis subsp. morrisoni. However, some of the proteins of B. thuringiensis subsp. fukuokaensis are homologous to other B. thuringiensis toxins because N-terminal amino acid analysis revealed that the 90-kDa protein is encoded by a cryIV gene type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号