首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Drosophila homolog of Aut1 is essential for autophagy and development   总被引:1,自引:0,他引:1  
Juhász G  Csikós G  Sinka R  Erdélyi M  Sass M 《FEBS letters》2003,543(1-3):154-158
The Drosophila homolog of yeast Aut1, CG6877/Draut1, is a ubiquitously expressed cytosolic protein. Draut1 loss of function was achieved by expression of an inverted repeat transgene inducing RNA interference. The effect is temperature-dependent and resembles an allelic series as described by Fortier, E. and Belote, J.M. (Genesis 26 (2000) 240-244). Draut1 loss of function larvae are unable to induce autophagy and heterophagy in fat body cells before pupariation and die during metamorphosis. To our knowledge, this is the first report of a multicellular animal lacking the function of a gene participating in the protein conjugation systems of autophagy.  相似文献   

2.
3.
4.
5.
The COP9 signalosome (originally described as the COP9 complex) is an essential multi-subunit repressor of light-regulated development in plants [1] [2]. It has also been identified in mammals, though its role remains obscure [3] [4] [5]. This complex is similar to the regulatory lid of the proteasome and eIF3 [5] [9] [10] [11] [12] and several of its subunits are known to be involved in kinase signaling pathways [4] [6] [7] [8]. No proteins homologous to COP9 signalosome components were identified in the Saccharomyces cerevisiae genome, suggesting that the COP9 signalosome is specific for multi-cellular differentiation [13]. In order to reveal the developmental function of the COP9 signalosome in animals, we have isolated Drosophila melanogaster genes encoding eight subunits of the COP9 signalosome, and have shown by co-immunoprecipitation and gel-filtration analysis that these proteins are components of the Drosophila COP9 signalosome. Yeast two-hybrid assays indicated that several of these proteins interact, some through the PCI domain. Disruption of one of the subunits by either a P-element insertion or deletion of the gene caused lethality at the late larval or pupal stages. This lethality is probably a result of numerous pleiotropic effects. Our results indicate that the COP9 signalosome is conserved in invertebrates and that it has an essential role in animal development.  相似文献   

6.
The 60-kDa heat shock protein family (Hsp60) is found in prokaryotes, mitochondria, and chloroplasts. The Hsp60 proteins promote proper protein folding by preventing aggregation. In Drosophila melanogaster, the hsp60 gene is essential for a variety of developmental processes, beginning at early embryogenesis. In this study we show that an additional member of the Drosophila hsp60 gene family, hsp60B, is essential in male fertility. In males homozygous for a mutation of the hsp60B gene, developmental processes appeared normal throughout most of spermatogenesis, including spermatocyte growth, meiosis, and spermatid elongation. At these stages, mitochondria also displayed a differentiation process similar to wild-types. However, we found that the mutation disrupted a late stage of spermatogenesis, the spermatid individualization process. In this process, the individualization complex is assembled at spermatid nuclear heads, traverses along spermatid tails, and generates membranes for each of the spermatids in a cyst. Our analysis further shows that the individualization complex in sterile males displayed abnormal morphology as it was traveling along the spermatid tails. The Drosophila Hsp60 proteins are believed to be exclusively localized in the mitochondria. Our observation that the hsp60B mutation displayed no apparent defect in mitochondrial differentiation during spermatogenesis suggests that the Hsp60B protein may operate in a nonmitochondrial location.  相似文献   

7.
Cytokinesis, the final stage of eukaryotic cell division, ensures the production of two daughter cells. It requires fine coordination between the plasma membrane and cytoskeletal networks, and it is known to be regulated by several intracellular proteins, including the small GTPase Rho and its effectors. In this study we provide evidence that the protein Nir2 is essential for cytokinesis. Microinjection of anti-Nir2 antibodies into interphase cells blocks cytokinesis, as it results in the production of multinucleate cells. Immunolocalization studies revealed that Nir2 is mainly localized in the Golgi apparatus in interphase cells, but it is recruited to the cleavage furrow and the midbody during cytokinesis. Nir2 colocalizes with the small GTPase RhoA in the cleavage furrow and the midbody, and it associates with RhoA in mitotic cells. Its N-terminal region, which contains a phosphatidylinositol transfer domain and a novel Rho-inhibitory domain (Rid), is required for normal cytokinesis, as overexpression of an N-terminal-truncated mutant blocks cytokinesis completion. Time-lapse videomicroscopy revealed that this mutant normally initiates cytokinesis but fails to complete it, due to cleavage furrow regression, while Rid markedly affects cytokinesis due to abnormal contractility. Rid-expressing cells exhibit aberrant ingression and ectopic cleavage sites; the cells fail to segregate into daughter cells and they form a long unseparated bridge-like cytoplasmic structure. These results provide new insight into the cellular functions of Nir2 and introduce it as a novel regulator of cytokinesis.  相似文献   

8.
9.
10.
11.
Twenty stages in the life cycle of Canton-S, a normal strain of Drosophila melanogaster, were investigated for protein content and the activities of choline acetyltransferase and acetylcholinesterase, enzymes associated with the metabolism of acetylcholine. The maximum protein content is reached at the prepupal stage. Specific activities of choline acetyltransferase and acetylcholinesterase were high in the larval stages and again in the mature fly. The activities of these enzymes expressed on a per fly basis were compared with the activities of other enzymes, previously published by other workers, expressed on the same basis. The developmental pattern of acetylcholinesterase and choline acetyltransferase differed from the patterns exhibited by the other enzymes described earlier. It was possible to relate the different enzyme patterns to known changes occurring in the life cycle of Drosophila melanogaster.Supported by grants from the National Multiple Sclerosis Society (347), and from the National Institutes of Health (FR 05471; NB 08864 and NB 08014).  相似文献   

12.
13.
14.
N-terminal acetylation, catalysed by N-terminal acetyltransferases (NATs), is among the most common protein modifications in eukaryotes and involves the transfer of an acetyl group from acetyl-CoA to the α-amino group of the first amino acid. Functions of N-terminal acetylation include protein degradation and sub-cellular targeting. Recent findings in humans indicate that a dysfunctional Nα-acetyltransferase (Naa) 10, the catalytic subunit of NatA, the major NAT, is associated with lethality during infancy. In the present study, we identified the Danio rerio orthologue zebrafish Naa 10 (zNaa10). In vitro N-terminal acetylation assays revealed that zNaa10 has NAT activity with substrate specificity highly similar to that of human Naa10. Spatiotemporal expression pattern was determined by in situ hybridization, showing ubiquitous expression with especially strong staining in brain and eye. By morpholino-mediated knockdown, we demonstrated that naa10 morphants displayed increased lethality, growth retardation and developmental abnormalities like bent axis, abnormal eyes and bent tails. In conclusion, we identified the zebrafish Naa10 orthologue and revealed that it is essential for normal development and viability of zebrafish.  相似文献   

15.
The mammalian ATM/PI 3-kinase-related TRRAP protein was previously found to be a component of a multi-protein histone acetyltransferase (HAT) complex containing the HAT TIP60. In this report, we identify a previously uncharacterized protein encoded by the FLJ10914 ORF, which we designate MRGBP, as a new component of the TRRAP/TIP60 HAT complex. In addition, through purification of MRGBP and its associated proteins from HeLa cell nuclear extracts, we identify the thyroid receptor coactivating protein (TRCp120), DMAP1, and the related MRG15 and MRGX proteins as MRGBP-associating proteins, and we present biochemical evidence that they are previously unrecognized components of the TRRAP/TIP60 HAT complex. Taken together, our findings shed new light on the structure and function of the mammalian TRRAP/TIP60 histone acetyltransferase complex.  相似文献   

16.
17.
18.
19.
In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a15b) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons.  相似文献   

20.
We report the first demonstration that the activity of a member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase gene family is necessary for viability in Drosophila melanogaster. Expression of the wild-type recombinant pgant35A gene in COS7 cells resulted in in vitro activity against peptide and glycopeptide substrates, demonstrating that this gene encodes a biochemically active transferase. Previous mutagenesis studies identified recessive lethal mutations that were rescued by a genomic fragment containing the pgant35A gene; however, the presence of additional open reading frames within this fragment left open the possibility that another gene was responsible for rescue of the observed lethality. Here, we have determined the molecular nature of the mutations in three independent mutant alleles. Two of the mutant alleles contain premature stop codons within the coding region of pgant35A. The third mutant contains an arginine to tryptophan amino acid change, which, when expressed in COS7 cells, resulted in a dramatic reduction of transferase activity in vitro. PCR amplification of this gene from Drosophila cDNA panels and Northern analysis revealed that it is expressed throughout embryonic, larval, and pupal stages as well as in adult males and females. This study provides the first direct evidence for the involvement of a member of this conserved multigene family in eukaryotic development and viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号