首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PR1 is a pathogenesis-related protein encoded in the parsley genome by a family of three genes (PR1-1, PR1-2 and PR1-3). Loss- and gain-of-function experiments in a transient expression system demonstrated the presence of two fungal elicitor responsive elements in each of the PR1-1 and PR1-2 promoters. These elements, W1, W2 and W3, contain the sequence (T)TGAC(C) and mutations that disrupt this sequence abolish function. Gel shift experiments demonstrated that W1, W2 and W3 are bound specifically by similar nuclear proteins. Three cDNA clones encoding sequence-specific DNA-binding proteins were isolated by South-Western screening and these proteins, designated WRKY1, 2 and 3, also bind specifically to W1, W2 and W3. WRKY1, 2 and 3 are members of the family of sequence-specific DNA-binding proteins, which we call the WRKY family. Treatment of parsley cells with the specific oligopeptide elicitor Pep25 induced a transient and extremely rapid increase in mRNA levels of WRKY1 and 3. WRKY2 mRNA levels in contrast showed a concomitant transient decrease. These rapid changes in WRKY mRNA levels in response to a defined signal molecule suggest that WRKY1, 2 and 3 play a key role in a signal transduction pathway that leads from elicitor perception to PR1 gene activation.  相似文献   

2.
WRKY转录因子是植物一类比较大的基因家族,在水稻中已鉴定出102个成员。研究表明WRKY转录因子在植物生长发育、抗病耐逆等方面都具有重要的作用。本研究利用基因芯片数据结合实时定量分析,对水稻Os WRKY转录因子基因在不同的非生物逆境下的表达进行了分析,发现至少有33个Os WRKY基因同时对任何两种非生物胁迫因子做出响应,且所选20个基因中,13个基因可被ABA所诱导。OsWRKY基因这种重叠表达的特性,预示着这些基因在非生物逆境中具有功能多效性,对于培育抗逆境水稻品种具有重要的理论与实践意义。  相似文献   

3.
4.
Lepidopteran insect cells display 50–100 times higher radioresistance compared to human cells, and reportedly have more efficient antioxidant system that can significantly reduce radiation-induced oxidative stress and cell death. However, the antioxidant mechanisms that contribute substantially to this excessive resistance still need to be understood thoroughly. In this study, we investigated the role of thioredoxin peroxidase (TPx) in high-dose γ-radiation response of Sf9 cell line derived from Spodoptera frugiperda, the Fall armyworm. We identified a TPx orthologue (Sf-TPx) in Spodoptera system, with primarily cytosolic localization. Gamma-irradiation at 500 Gy dose significantly up-regulated Sf-TPx, while higher doses (1000 Gy–2000 Gy) had no such effect. G2/M checkpoint induced following 500 Gy was associated with transition of Sf-TPx decamer into enzymatically active dimer. Same effect was observed during G2/M block induced by 5 nM okadaic acid or 10 µM CDK1 (cycline dependent kinase-1) inhibitor roscovitine, thus indicating that radiation-induced Sf-TPx activity is mediated by CDKs. Accumulation of TPx dimer form during G2/M checkpoint might favour higher peroxidase activity facilitating efficient survival at this dose. Confirming this, higher lethal doses (1000 Gy–2000 Gy) caused significantly less accumulation of dimer form and induced dose-dependent apoptosis. A ∼50% knock-down of Sf-TPx by siRNA caused remarkable increase in radiation-induced ROS as well as caspase-3 dependent radiation-induced apoptosis, clearly implying TPx role in the radioresistance of Sf9 cells. Quite importantly, our study demonstrates for the first time that thioredoxin peroxidase contributes significantly in the radioresistance of Lepidopteran Sf9 insect cells, especially in their exemplary resistance against radiation-induced apoptosis. This is an important insight into the antioxidant mechanisms existing in this highly stress-resistant model cell system.  相似文献   

5.
Oxidative damage to mitochondria is a central mechanism of apoptosis induced by many toxic chemicals. Thioredoxin family proteins share a conserved Cys-X-X-Cys motif at their active center and play important roles in control of cellular redox state and protection against oxidative damage. In addition to the well studied cytosolic and extracellular form (Trx1), rat and avian mitochondrial forms of thioredoxin (mtTrx) have been reported. In this study, we cloned the full-length human mtTrx cDNA and performed localization and functional studies in 143B human osteosarcoma cells. The coding sequence of human mtTrx consists of a region with homology to Trx1 as well as a putative mitochondrial localization signal (MLS) at its N terminus. In stably transfected cell lines, mtTrx had a mitochondrial localization as measured by subcellular fractionation studies and by confocal fluorescence microscopy. Deletion of the MLS rendered mtTrx to be solely expressed in the cytosolic fraction. On SDS-PAGE, transfected mtTrx had the same apparent molecular weight as the MLS truncated form, indicating that the leader sequence is cleaved during or after mitochondrial import. Treatment with the oxidant tert-butylhydroperoxide induced apoptosis in 143B cells. This oxidant-induced apoptosis was inhibited by overexpressing the full-length mtTrx in 143B cells. Thus, human mtTrx is a member of the thioredoxin family of proteins localized to mitochondria and may play important roles in protection against oxidant-induced apoptosis.  相似文献   

6.
7.
8.
乔刚  李莉  姜山 《广西植物》2022,42(2):267-276
WRKY作为最先在植物中发现的转录因子,在植物生长发育等过程中发挥重要作用。为了更好地研究小立碗藓WRKY蛋白的结构与功能,该文以Pfam数据库中WRKY基因家族数据(登录号为PF03106)为材料,分析了小立碗藓(Physcomitrella patens)WRKY基因家族成员的理化性质、蛋白质的二级结构预测、染色体定位、内外显子分布及系统进化关系。结果表明:(1)小立碗藓WRKY基因家族成员共有38个基因,根据WRKY保守结构域个数和锌指结构类型分成Ⅰ、Ⅱ两大类,不含第Ⅲ类(锌指结构为C2HC型),其中部分基因WRKY保守结构域发生变异。(2)WRKY蛋白氨基酸长度在216~775 aa之间、相对分子质量在24.5~82.8 kDa之间,亚细胞定位显示WRKY家族成员蛋白质定位于细胞核中。(3)WRKY蛋白的二级结构以α-螺旋、延伸链、β-转角、无规卷曲四种构成元件构成,除PpWRKY11(α-螺旋为主)外,其余无规卷曲占比高达70%。(4)与拟南芥的系统进化关系表明,植物在进化过程中WRKY家族成员的数目与进化方式发生改变,WRKY基因家族成员外显子的个数为3~7个。(5)小立碗藓WRKY基因家族成员无规则分散于21条染色体上,并未形成基因簇。该研究通过分析WRKY基因家族的基本结构与性质,能为后续深入研究WRKY转录因子的功能奠定基础。  相似文献   

9.
Molecular characterization has been accomplished for five members of the peroxidase gene family in French bean. The most important of these, designated FBP1, corresponds to the isoform believed to be responsible for the apoplastic oxidative burst demonstrated by suspension-cultured cells in response to fungal elicitor. Identification was made by a complete match of six peptide sequences derived from the native protein to the translated sequence of the cDNA. Modelling of the surface structure in comparison with two other members of the peroxidase family did not reveal any unusual features which might account for its role in the oxidative burst. However, FBP1 when expressed in Pichia pastoris generated H2O2 using cysteine at pH 7.2, a specific property of the native protein when isolated from suspension-cultured cells. FBP1, together with other members of the family, were all induced in cell cultures by elicitor action although they all showed some expression in non-induced cultured cells. They were also expressed in all tissues examined with varying levels of intensity of detection in northern blots. This was confirmed by in situ hybridization and FBP1 expression was confirmed in tissues where it has been previously detected by immunolocalization methods. Assigning roles to individual peroxidases is an important goal and molecular identification of the oxidative burst peroxidase allows further exploration of the relative roles of the different systems involved in generating reactive oxygen species.  相似文献   

10.
An efficient oxidative stress response (OSR) is important for the facultative pathogenic yeast Candida albicans to survive within the human host. We used a large scale 2-D protein gel electrophoresis approach to analyze the stress response mechanisms of C. albicans after treatment with hydrogen peroxide and the thiol oxidizing agent, diamide. Quantitation of in vivo protein synthesis after pulse labeling of the proteins with radioactive L-[35S]-methionine resulted in characteristic proteome signatures for hydrogen peroxide and diamide with significant overlap of 21 up-regulated proteins for both stressors. Among the induced proteins were enzymes with known antioxidant functions like catalase or thioredoxin reductase and a set of oxidoreductases. 2-D gel analysis of mutants in the CAP1 gene revealed that the synthesis of 12 proteins is controlled by the oxidative stress regulator Cap1p. Stressing its importance for the C. albicans OSR, all 12 proteins were also induced after oxidative challenge by hydrogen peroxide or diamide.  相似文献   

11.
Human peroxiredoxin 5 is a recently discovered mitochondrial, peroxisomal and cytosolic thioredoxin peroxidase able to reduce hydrogen peroxide and alkyl hydroperoxides. To gain insight into peroxiredoxin 5 antioxidant role in cell protection, we investigated the resistance of yeast cells expressing human peroxiredoxin 5 in mitochondria or in the cytosol against oxidative stress induced by paraquat. The herbicide paraquat is a redox active drug known to generate superoxide anions in mitochondria and the cytosol of yeast and mammalian cells leading to the formation of several reactive oxygen species. Here, we report that mitochondrial and cytosolic human peroxiredoxin 5 protect yeast cells from cytotoxicity and lipid peroxidation induced by paraquat.  相似文献   

12.
In the model plant Arabidopsis thaliana, cytosolic thioredoxins h (TRXh) are encoded by a multigenic family of eight genes. Genomic studies have revealed that a number of these genes are duplicated genes originating from a common ancestor. This multiplicity of thioredoxin h genes raises questions of the specificity of plant thioredoxins and the function of such a large multigenic family in plant. The results from studies using northern blots, semi-quantitative RT-PCR and transgenic promoter–GUS fusions provide strong evidence that the members of the AtTRXh gene family show expression levels that vary among different plant organs. Moreover, distinct AtTRXh genes are induced in response to pathogenic elicitors. Together, our data suggest that the members of the multigenic family of AtTRXh may not have redundant functions.  相似文献   

13.
Phospholipase D (PLD, EC 3.1.4.4.) has been implicated in a variety of plant processes, including signalling. In Arabidopsis thaliana a PLD gene family has been described and individual members classified into alpha-, beta- and gamma-classes. Here we describe a second PLD gene family in tomato (Lycopersicon esculentum) that includes three alpha- and two beta-classes. Different expression patterns in plant organs were observed for each PLD. In testing a variety of stress treatments on tomato cell suspensions, PLDbeta1 mRNA was found to rapidly and specifically accumulate in response to the fungal elicitor xylanase. The greatest increase was found 2 h after treatment with 100 microg m1(-1) xylanase (ninefold). In vivo PLD activity increased nearly threefold over a 1.5 h period of treatment. When the elicitor was injected into tomato leaves, PLDbeta1 mRNA accumulation peaked at 2 h (threefold increase), before decreasing to background levels within 72 h. Mutant, non-active xylanase was as effective as the active enzyme in eliciting a response, suggesting that xylanase itself, and not the products resulting from its activity, functioned as an elicitor. When chitotetraose was used as elicitor, no PLDbeta1 mRNA accumulation was observed, thus it is not a general response to elicitation. Together these data show that PLD genes are differentially regulated, reflecting potential differences in cellular function. The possibility that PLDbeta1 is a signalling enzyme is discussed.  相似文献   

14.
15.
Thioredoxin reductase (TrxR) is a member of the pyridine nucleotide-disulfide reductase family, which mainly functions in the thioredoxin system. TrxR is found in all living organisms and exists in two major ubiquitous isoenzymes in higher eukaryotic cells; One is cytosolic and the other mitochondrial. Mitochondrial TrxR functions to protect mitochondria from oxidative stress, where reactive oxidative species are mainly generated, while cytosolic TrxR plays a role to maintain optimal oxido-reductive status in cytosol. In this study, we report differential physiological functions of these two TrxRs in C. elegans. trxr-1, the cytosolic TrxR, is highly expressed in pharynx, vulva and intestine, whereas trxr-2, the mitochondrial TrxR, is mainly expressed in pharyngeal and body wall muscles. Deficiency of the non-selenoprotein trxr-2 caused defects in longevity and delayed development under stress conditions, while deletion mutation of the selenoprotein trxr-1 resulted in interference in acidification of lysosomal compartment in intestine. Interestingly, the acidification defect of trxr-1(jh143) deletion mutant was rescued, not only by selenocystein-containing wild type TRXR-1, but also cysteine-substituted mutant TRXR-1. Both trxr-1 and trxr-2 were up-regulated when worms were challenged by environmental stress such as heat shock. These results suggest that trxr-1 and trxr-2 function differently at organismal level presumably by their differential sub-cellular localization in C. elegans.  相似文献   

16.
Phytophthora palmi分泌的10.6kD蛋白激发烟草的过敏反应   总被引:2,自引:0,他引:2  
从疫霉菌Phytophthora palmivora Butler的培养滤液中分离出分子量为10.6kD的不含糖基的耐热蛋白.这种10.6k蛋白能诱导烟草(Nicotiana tabacum L.)叶片发生过敏性坏死反应。而疫霉菌另一种P.melonis Katsura的培养滤液中不含这种类似蛋白,不能诱导烟草叶片发生过敏反应。利用共聚焦激光扫描显微镜,以荧光探剂FDA(fluorescein d  相似文献   

17.
Peroxiredoxin 5 is a mammalian thioredoxin peroxidase ubiquitously expressed in tissues. Peroxiredoxin 5 can be intracellularly localized to mitochondria, peroxisomes, the cytosol, and, to a lesser extent, the nucleus. This remarkably wide subcellular distribution compared with the five other mammalian peroxiredoxins prompted us to further investigate the antioxidant protective function of peroxiredoxin 5 in mammalian cells according to its subcellular localization. Chinese hamster ovary cells overexpressing human peroxiredoxin 5 in the cytosol, in mitochondria, or in the nucleus were established by stable transfection. Cells overexpressing peroxiredoxin 5 were exposed for 1 h to low or acute oxidative stress with exogenously added hydrogen peroxide or tert-butylhydroperoxide. Cell protection conferred by peroxiredoxin 5 was evaluated by clonogenicity and lactate dehydrogenase assays. Overexpressing peroxiredoxin 5 in either the cytosolic, mitochondrial, or nuclear compartment significantly reduced cell death, with more effective protection with overexpression of peroxiredoxin 5 in mitochondria, confirming that this organelle is a major target of peroxides. Moreover, we evaluated, with the comet assay, nuclear DNA damage induced by hydrogen peroxide or tert-butylhydroperoxide. Overexpression of peroxiredoxin 5 in the nucleus significantly decreased DNA damage induced by both peroxides. In conclusion, the present study suggests that multiple subcellular targeting of peroxiredoxin 5 in mammalian cells can be implicated in antioxidant protective mechanisms under nonpathological conditions but also during acute oxidative stress caused by peroxides occurring in pathophysiological situations.  相似文献   

18.
19.
20.
Programmed cell death (PCD) is a genetically controlled cell death that is regulated during development and activated in response to environmental stresses or pathogen infection. The degree of conservation of PCD across kingdoms and phylum is not yet clear; however, whereas caspases are proteases that act as key components of animal apoptosis, plants have no orthologous caspase sequences in their genomes. The discovery of plant and fungi metacaspases as proteases most closely related to animal caspases led to the hypothesis that metacaspases are the functional homologues of animal caspases in these organisms. Arabidopsis thaliana has nine metacaspase genes, and so far it is unknown which members of the family if any are involved in the regulation of PCD. We show here that metacaspase-8 (AtMC8) is a member of the gene family strongly up-regulated by oxidative stresses caused by UVC, H(2)O(2), or methyl viologen. This up-regulation was dependent of RCD1, a mediator of the oxidative stress response. Recombinant metacaspase-8 cleaved after arginine, had a pH optimum of 8, and complemented the H(2)O(2) no-death phenotype of a yeast metacaspase knock-out. Overexpressing AtMC8 up-regulated PCD induced by UVC or H(2)O(2), and knocking out AtMC8 reduced cell death triggered by UVC and H(2)O(2) in protoplasts. Knock-out seeds and seedlings had an increased tolerance to the herbicide methyl viologen. We suggest that metacaspase-8 is part of an evolutionary conserved PCD pathway activated by oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号