共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Maureen Wirschell Chun Yang Pinfen Yang Laura Fox Haru-aki Yanagisawa Ritsu Kamiya George B. Witman Mary E. Porter Winfield S. Sale 《Molecular biology of the cell》2009,20(13):3044-3054
Our goal is to understand the assembly and regulation of flagellar dyneins, particularly the Chlamydomonas inner arm dynein called I1 dynein. Here, we focus on the uncharacterized I1-dynein IC IC97. The IC97 gene encodes a novel IC without notable structural domains. IC97 shares homology with the murine lung adenoma susceptibility 1 (Las1) protein—a candidate tumor suppressor gene implicated in lung tumorigenesis. Multiple, independent biochemical assays determined that IC97 interacts with both α- and β-tubulin subunits within the axoneme. I1-dynein assembly mutants suggest that IC97 interacts with both the IC138 and IC140 subunits within the I1-dynein motor complex and that IC97 is part of a regulatory complex that contains IC138. Microtubule sliding assays, using axonemes containing I1 dynein but devoid of IC97, show reduced microtubule sliding velocities that are not rescued by kinase inhibitors, revealing a critical role for IC97 in I1-dynein function and control of dynein-driven motility. 相似文献
7.
DAP1, a Novel Substrate of mTOR,Negatively Regulates Autophagy 总被引:1,自引:0,他引:1
8.
本文介绍了植物热激蛋白的产:生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展。 相似文献
9.
10.
11.
Wang WM Ma XF Zhang Y Luo MC Wang GL Bellizzi M Xiong XY Xiao SY 《Molecular plant》2012,5(5):1125-1137
Many fungal and oomycete pathogens differentiate a feeding structure named the haustorium to extract nutrition from the plant epidermal cell. The atypical resistance (R) protein RPW8.2 activates salicylic acid (SA)-dependent, haustorium-targeted defenses against Golovinomyces spp., the causal agents of powdery mildew diseases on multiple plant species. How RPW8.2 activates defense remains uncharacterized. Here, we report that RPW8.2 interacts with the phytochrome-associated protein phosphatase type 2C (PAPP2C) in yeast and in planta as evidenced by co-immunoprecipitation and bimolecular fluorescence complementation assays. Down-regulation of PAPP2C by RNA interference (RNAi) in Col-0 plants lacking RPW8.2 leads to leaf spontaneous cell death and enhanced disease resistance to powdery mildew via the SA-dependent signaling pathway. Moreover, down-regulation of PAPP2C by RNAi in the RPW8.2 background results in strong HR-like cell death, which correlates with elevated RPW8.2 expression. We further demonstrate that hemagglutinin (HA)-tagged PAPP2C prepared from tobacco leaf cells transiently transformed with HA-PAPP2C possesses phosphatase activity. In addition, silencing a rice gene (Os04g0452000) homologous to PAPP2C also results in spontaneous cell death in rice. Combined, our results suggest that RPW8.2 is functionally connected with PAPP2C and that PAPP2C negatively regulates SA-dependent basal defense against powdery mildew in Arabidopsis. 相似文献
12.
Min-Sung Kwon Kyoung Ryoung Park Young-Dae Kim Bo-Ra Na Hye-Ran Kim Hak-Jong Choi Indre Piragyte Hyesung Jeon Kyung Hwun Chung Woo Keun Song Soo Hyun Eom Chang-Duk Jun 《PloS one》2013,8(8)
Protein functions are often revealed by their localization to specialized cellular sites. Recent reports demonstrated that swiprosin-1 is found together with actin and actin-binding proteins in the cytoskeleton fraction of human mast cells and NK-like cells. However, direct evidence of whether swiprosin-1 regulates actin dynamics is currently lacking. We found that swiprosin-1 localizes to microvilli-like membrane protrusions and lamellipodia and exhibits actin-binding activity. Overexpression of swiprosin-1 enhanced lamellipodia formation and cell spreading. In contrast, swiprosin-1 knockdown showed reduced cell spreading and migration. Swiprosin-1 induced actin bundling in the presence of Ca2+, and deletion of the EF-hand motifs partially reduced bundling activity. Swiprosin-1 dimerized in the presence of Ca2+ via its coiled-coil domain, and a lysine (Lys)-rich region in the coiled-coil domain was essential for regulation of actin bundling. Consistent with these observations, mutations of the EF-hand motifs and coiled-coil region significantly reduced cell spreading and lamellipodia formation. We provide new evidence of how swiprosin-1 influences cytoskeleton reorganization and cell spreading. 相似文献
13.
Shintaro Seto Keiko Sugaya Kunio Tsujimura Toshi Nagata Toshinobu Horii Yukio Koide 《PloS one》2013,8(12)
Rab39a has pleiotropic functions in phagosome maturation, inflammatory activation and neuritogenesis. Here, we characterized Rab39a function in membrane trafficking of phagocytosis and autophagy induction in macrophages. Rab39a localized to the periphery of LAMP2-positive vesicles and showed the similar kinetics on the phagosome to that of LAMP1. The depletion of Rab39a did not influence the localization of LAMP2 to the phagosome, but it augments the autophagosome formation and LC3 processing by lipopolysaccharide (LPS) stimulation. The augmentation of autophagosome formation in Rab39a-knockdown macrophages was suppressed by Atg5 depletion or an inhibitor for phosphatidylinostol 3-kinase (PI3K). Immunoprecipitation analysis revealed that Rab39a interacts with PI3K and that the amino acid residues from 34th to 41st in Rab39a were indispensable for this interaction. These results suggest that Rab39a negatively regulates the LPS-induced autophagy in macrophages. 相似文献
14.
15.
Caenorhabditis elegans SUR-5, a Novel but Conserved Protein, Negatively Regulates LET-60 Ras Activity during Vulval Induction 总被引:1,自引:0,他引:1 下载免费PDF全文
The let-60 ras gene acts in a signal transduction pathway to control vulval differentiation in Caenorhabditis elegans. By screening suppressors of a dominant negative let-60 ras allele, we isolated three loss-of-function mutations in the sur-5 gene which appear to act as negative regulators of let-60 ras during vulval induction. sur-5 mutations do not cause an obvious mutant phenotype of their own, and they appear to specifically suppress only one of the two groups of let-60 ras dominant negative mutations, suggesting that the gene may be involved in a specific aspect of Ras activation. Consistent with its negative function, overexpressing sur-5 from an extragenic array partially suppresses the Multivulva phenotype of an activated let-60 ras mutation and causes synergistic phenotypes with a lin-45 raf mutation. We have cloned sur-5 and shown that it encodes a novel protein. We have also identified a potential mammalian SUR-5 homolog that is about 35% identical to the worm protein. SUR-5 also has some sequence similarity to acetyl coenzyme A synthetases and is predicted to contain ATP/GTP and AMP binding sites. Our results suggest that sur-5 gene function may be conserved through evolution. 相似文献
16.
Melissa C. Garcia Denise M. Ray Brad Lackford Mark Rubino Kenneth Olden John D. Roberts 《The Journal of biological chemistry》2009,284(31):20936-20945
Rho GTPases are critical components of cellular signal transduction pathways. Both hyperactivity and overexpression of these proteins have been observed in human cancers and have been implicated as important factors in metastasis. We previously showed that dietary n-6 fatty acids increase cancer cell adhesion to extracellular matrix proteins, such as type IV collagen. Here we report that in MDA-MB-435 human melanoma cells, arachidonic acid activates RhoA, and inhibition of RhoA signaling with either C3 exoenzyme or dominant negative Rho blocked arachidonic acid-induced cell adhesion. Inhibition of the Rho kinase (ROCK) with either small molecule inhibitors or ROCK II-specific small interfering RNA (siRNA) blocked the fatty acid-induced adhesion. However, unlike other systems, inhibition of ROCK did not block the activation of p38 mitogen-activated protein kinase (MAPK); instead, Rho activation depended on p38 MAPK activity and the presence of heat shock protein 27 (HSP27), which is phosphorylated downstream of p38 after arachidonic acid treatment. HSP27 associated with p115RhoGEF in fatty acid-treated cells, and this association was blocked when p38 was inhibited. Furthermore, siRNA knockdown of HSP27 blocked the fatty acid-stimulated Rho activity. Expression of dominant negative p115-RhoGEF or p115RhoGEF-specific siRNA inhibited both RhoA activation and adhesion on type IV collagen, whereas a constitutively active p115RhoGEF restored the arachidonic acid stimulation in cells in which the p38 MAPK had been inhibited. These data suggest that n-6 dietary fatty acids stimulate a set of interactions that regulates cell adhesion through RhoA and ROCK II via a p38 MAPK-dependent association of HSP27 and p115RhoGEF.The ability of tumor cells to metastasize to secondary sites is a hallmark of neoplastic disease. Unfortunately, this propensity to spread is the primary cause of morbidity and death in cancer patients (1). Metastasis is clearly a highly regulated, multistep process that occurs in a spatiotemporal manner (2–4). To escape the restrictive compartment boundaries characteristic of adult tissue, separate intravasation and extravasation steps requiring alterations in co-adhesion, adhesion, invasion, and migration must occur. Execution of these biological processes, involving multiple proteins and cellular organelles, require highly coordinated cell signaling mechanisms.The Rho family of small GTPases regulates many facets of cytoskeletal rearrangements that facilitate cell attachment and migration (5–7). Rho GTPases act as molecular switches by changing from an inactive GDP-bound conformation to an active GTP-bound conformation, thereby regulating a signaling pathway. These proteins are directly regulated by Rho guanine nucleotide exchange factors (GEFs),2 Rho GTPase activating proteins, and Rho GDP-dissociation inhibitors (8–12). RhoGEFs bind to the GTPase to catalyze the dissociation of GDP, allowing the binding of GTP and thereby promoting Rho activation (8). The RGS (regulators of G protein signaling) domain-containing RhoGEFs are a recently described family of GEFs. Currently, there are three members of this family, PDZ-RhoGEF, LARG, and p115RhoGEF (13–15), in which the RGS domains function as a heterotrimeric GTPase-activating domain (13, 15, 16). The RGS family of RhoGEFs has been shown to regulate Rho during several processes including cytoskeletal rearrangements, cell adhesion, and cancer progression (17–21).There is significant interplay between the activity of small GTPases and signaling derived from fatty acid metabolism (22–28). Linoleic acid, which is metabolized to arachidonic acid, is an n-6 polyunsaturated fatty acid that is present at high levels in most western diets (29). In animal models, diets high in n-6 polyunsaturated fatty acids have been shown to enhance tumor progression and metastasis (30, 31). Additionally, arachidonic acid is stored in cell membranes and is made available by phospholipases under conditions of increased inflammatory response (32). Arachidonic acid is further metabolized by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases to yield bioactive products that have myriad effects on cells, and altered metabolism of arachidonic acid by COX, LOX, and P450 has been implicated in cancer progression (31, 33–36).We have studied mechanisms of cell adhesion using the MDA-MB-435 cells as a model of a highly metastatic human cancer cell line (37). These cells have been extensively studied for their ability to recapitulate the metastatic cascade in vivo and in vitro, although recent work indicates that the cells currently in use are most likely a human melanoma line (38). We initially observed that arachidonic acid (AA) enhanced adhesion of MDA-MB-435 cells to type IV collagen through specific integrin-mediated pathways (37). Exogenous AA led to the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase 2 and the phosphorylation of heat shock protein 27 (HSP27) via a p38 MAPK-dependent process (39). Inhibition of p38 MAPK activation blocked cell adhesion as did function-blocking antibodies specific for subunits of the collagen receptor (40). More recently, we identified the key metabolite of AA (15-(S)- hydroxyeicosatetraenoic acid) and the upstream kinases (TAK1 and MKK6) that are responsible for activation of p38 MAPK in this system (41).In this study we investigated the role of Rho activation in the MDA-MB-435 cells after exposure to arachidonic acid. Several aspects of the regulation of Rho signaling in these cells provide insights into the cross-talk between important signaling pathways. 相似文献
17.
Comparison of Recombinant Proteins of Kinesin 39, Heat Shock Protein 70, Heat Shock Protein 83, and Glycoprotein 63 for Antibody Detection of Leishmania martiniquensis Infection 下载免费PDF全文
Suradej Siripattanapipong Hirotomo Kato Peerapan Tan‐ariya Mathirut Mungthin Saovanee Leelayoova 《The Journal of eukaryotic microbiology》2017,64(6):820-828
Leishmania martiniquensis, a zoonotic hemoflagellate, is a causative agent of cutaneous (CL) and visceral leishmaniasis (VL) among humans and animals. This organism, first reported in Martinique Island, now has become an emerging infectious agent in Thailand. Symptomatic cases of L. martiniquensis infection among humans have continuously increased. In the meantime, asymptomatic infection of this novel species has seriously created national public health awareness and concern to prevent and control disease transmission. The unsuccessful serological test using the commercial rK39 dipstick based on antigen from Leishmania donovani to detect the antibodies against VL among infected Thai patients has encouraged us to further explore a new sensitive and specific antigenic epitope. In this study, we determined the sequences and expressed recombinant proteins of kinesin 39 (k39), heat shock protein 70 (hsp70), heat shock protein 83 (hsp83), and glycoprotein 63 (gp63) of L. martiniquensis to evaluate the diagnostic efficiency to detect antibodies against L. martiniquensis in patient sera. The preliminary results from western blot analysis have suggested that K39 is the most sensitive recombinant protein to detect L. martiniquensis. Moreover, this recombinant protein reacts with antibodies against L. donovani and Leishmania infantum, making it a promising antigen for further development of a universal rapid diagnostic tool for VL. 相似文献
18.
19.
Heat shock proteins (HSPs) function as molecular chaperones and are essential for the maintenance and/or restoration of protein homeostasis. The genus Xanthomonas type III effector protein AvrBsT induces hypersensitive cell death in pepper (Capsicum annuum). Here, we report the identification of the pepper CaHSP70a as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and coimmunoprecipitation assays confirm the specific interaction between CaHSP70a and AvrBsT in planta. The CaHSP70a peptide-binding domain is essential for its interaction with AvrBsT. Heat stress (37°C) and Xanthomonas campestris pv vesicatoria (Xcv) infection distinctly induce CaHSP70a in pepper leaves. Cytoplasmic CaHSP70a proteins significantly accumulate in pepper leaves to induce the hypersensitive cell death response by Xcv (avrBsT) infection. Transient CaHSP70a overexpression induces hypersensitive cell death under heat stress, which is accompanied by strong induction of defense- and cell death-related genes. The CaHSP70a peptide-binding domain and ATPase-binding domain are required to trigger cell death under heat stress. Transient coexpression of CaHSP70a and avrBsT leads to cytoplasmic localization of the CaHSP70a-AvrBsT complex and significantly enhances avrBsT-triggered cell death in Nicotiana benthamiana. CaHSP70a silencing in pepper enhances Xcv growth but disrupts the reactive oxygen species burst and cell death response during Xcv infection. Expression of some defense marker genes is significantly reduced in CaHSP70a-silenced leaves, with lower levels of the defense hormones salicylic acid and jasmonic acid. Together, these results suggest that CaHSP70a interacts with the type III effector AvrBsT and is required for cell death and immunity in plants.The heat shock protein HSP70 is a ubiquitous essential protein chaperone and one of the most abundant and diverse heat stress proteins in plants. HSP70s are induced by environmental stresses and are required for plants to cope with heat. HSP70s are involved in protein folding, synthesis, translocation, and macromolecular assemblies such as microtubules (Mayer et al., 2001; Hartl and Hayer-Hartl, 2002). HSP70s protect cells from heat stress by preventing protein aggregation and by facilitating the refolding of denatured proteins. Protein stability can decrease under heat stress conditions and expose hydrophobic patches that cause the aggregation of denatured proteins. HSP70s bind to hydrophobic patches of partially unfolded proteins in an ATP-dependent manner and prevent protein aggregation (Mayer and Bukau, 2005). The modular HSP70 structure consists of a N-terminal ATPase domain and a C-terminal peptide-binding domain that contains a β-sandwich subdomain with a peptide-binding cleft and an α-helical latch-like segment (Zhu et al., 1996; Hartl and Hayer-Hartl, 2002).HSP70s are involved in microbial pathogenesis, cell death responses, and immune responses. Diverse RNA viruses induce HSP70 expression in Arabidopsis (Arabidopsis thaliana; Whitham et al., 2003). Cytoplasmic HSP70s enhance the infection of Nicotiana benthamiana by Tobacco mosaic virus, Potato virus X, Cucumber mosaic virus, and Watermelon mosaic virus (Chen et al., 2008). Recently, the coat protein of Tomato yellow leaf curl virus was suggested to recruit host plant HSP70 during virus infection (Gorovits et al., 2013). HSP70s appear to be involved in regulating viral reproduction, protein folding, and movement, which ultimately promotes viral infection (Boevink and Oparka, 2005; Hafrén et al., 2010). The Pseudomonas syringae effector protein Hopl1 directly binds and manipulates host HSP70, which promotes bacterial virulence (Jelenska et al., 2010). The cytosolic/nuclear heat shock cognate 70 (HSC70) chaperone, which is highly homologous to HSP70 (Tavaria et al., 1996), regulates Arabidopsis immune responses together with SGT1 (for the suppressor of the G2 allele of S-phase kinase-associated protein1 [skp1]; Noël et al., 2007). Cytoplasmic HSP70 is required for the Phytophthora infestans INF1-mediated hypersensitive response (HR) and nonhost resistance to Pseudomonas cichorii in N. benthamiana (Kanzaki et al., 2003). HSP70 is proposed to be involved in both positive and negative regulation of cell death. Selective HSP70 depletion from human cell lines activates a tumor-specific death program that is independent of known caspases and p53 tumor-suppressor protein (Nylandsted et al., 2000), whereas HSP70 promotes tumor necrosis factor-mediated apoptosis by binding IkB kinase γ and impairing nuclear factor-κB signaling in Cos-1 cells (Ran et al., 2004). In N. benthamiana, HSP70 is required for tabtoxinine-β-lactam-induced cell death (Ito et al., 2014). However, HSP70 expression is shown to decrease the cell death triggered by salicylic acid (SA) in Nicotiana tabacum protoplasts (Cronjé et al., 2004). Overexpression of mitochondrial HSP70 suppresses heat- and hydrogen peroxide (H2O2)-induced programmed cell death in rice (Oryza sativa; Qi et al., 2011).The genus Xanthomonas YopJ-like AvrBsT protein activates effector-triggered immunity (ETI) in Arabidopsis Pitztal 0 plants (Cunnac et al., 2007). AvrBsT is a member of the YopJ/AvrRxv family identified in Xanthomonas campestris pv vesicatoria (Xcv; Lewis et al., 2011). AvrBsT alters phospholipid signaling and activates defense responses in Arabidopsis (Kirik and Mudgett, 2009). AvrBsT is an acetyltransferase that acetylates Arabidopsis ACETYLATED INTERACTING PROTEIN1 (ACIP1), a microtubule-associated protein required for plant immunity (Cheong et al., 2014). Xcv strain Bv5-4a secretes the AvrBsT type III effector protein that induces hypersensitive cell death and strong defense responses in pepper (Capsicum annuum) and N. benthamiana (Orth et al., 2000; Escolar et al., 2001; Kim et al., 2010). AvrBsT-induced HR-like cell death in pepper is likely part of the typical ETI-mediated defense response cascade (Jones and Dangl, 2006; Eitas et al., 2008; Eitas and Dangl, 2010). AvrBsT overexpression in Arabidopsis triggers plant cell death and defense signaling, leading to both disease and defense responses to diverse microbial pathogens (Hwang et al., 2012). Type III effectors such as Hopl1 and AvrBsT are used to identify unknown components of plant defense cascades (Nomura et al., 2006; Block et al., 2008; Jelenska et al., 2010; Kim et al., 2014) that modulate host innate immunity to achieve disease resistance. The pepper SGT1 was identified recently as a host interactor of AvrBsT (Kim et al., 2014). Pepper SGT1 has features of a cochaperone (Shirasu and Schulze-Lefert, 2003), interacts with AvrBsT, and promotes hypersensitive cell death associated with the pepper receptor-like cytoplasmic protein kinase1 (PIK1) phosphorylation cascade.In this study, we used a yeast (Saccharomyces cerevisiae) two-hybrid screen to identify the pepper HSP70a (CaHSP70a) as an interacting partner of the Xanthomonas spp. type III effector AvrBsT. Coimmunoprecipitation and bimolecular fluorescence complementation (BiFC) analyses verify that CaHSP70a interacts with AvrBsT in planta. Transient CaHSP70a overexpression in pepper leaves enhances heat stress sensitivity and leads to a cell death response. Cytoplasmic localization of the AvrBsT-CaHSP70a complex strongly elevates cell death. CaHSP70a expression is rapidly and strongly induced by avrBsT (for avirulent Xcv Dukso1 [Ds1]) infection in pepper. CaHSP70a silencing enhances susceptibility to Xcv infection, attenuates the reactive oxygen species (ROS) burst and cell death response, reduces SA and jasmonic acid (JA) levels, and disrupts expression of the defense response genes C. annuum pathogenesis-related protein1 (CaPR1; Kim and Hwang, 2000), CaPR10 (Choi et al., 2012), and CaDEF1 (for defensin; Do et al., 2004). Taken together, this study demonstrates that CaHSP70a is a target of the Xanthomonas spp. type III effector AvrBsT and acts as a positive regulator of plant cell death and immunity signaling. 相似文献