首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monogenic inherited isolated alopecias comprise a group of clinically and genetically heterogeneous forms of hairlessness or hair loss. Clinical classification of the isolated alopecias is based on the onset of the disorder, the regions affected, and the structure of the hair shaft. Men and women are equally affected, and the mode of inheritance is autosomal dominant or autosomal recessive. Since the identification of the keratin gene KRT86 as a cause of the so-called monilethrix in 1997, mutations in nine other genes have been identified for various isolated alopecias. These include other keratin genes for monilethrix (KRT81 and KRT83), the hairless gene for atrichia congenita/papular atrichia, the corneodesmosin gene for the autosomal dominant form of hypotrichosis simplex, and the genes desmoglein 4, lipase H, and the G-protein-coupled receptor P2RY5 (LPAR6) for the autosomal recessive forms of hypotrichosis. Molecular genetic and pathophysiological studies of these rare disorders of hair development have contributed significantly to our understanding of the basic mechanisms of hair loss as well as the physiological mechanisms of hair growth.  相似文献   

2.
The corneal endothelium maintains the level of hydration in the cornea. Dysfunction of the endothelium results in excess accumulation of water in the corneal stroma, leading to swelling of the stroma and loss of transparency. There are four different corneal endothelial dystrophies that are hereditary, progressive, non-inflammatory disorders involving dysfunction of the corneal endothelium. Each of the endothelial dystrophies is genetically heterogeneous with different modes of transmission and/or different genes involved in each subtype. Genes responsible for disease have been identified for only a subset of corneal endothelial dystrophies. Knowledge of genes involved and their function in the corneal endothelium can aid understanding the pathogenesis of the disorder as well as reveal pathways that are important for normal functioning of the endothelium.  相似文献   

3.
Emery-Dreifuss muscular dystrophy (EDMD) is a rare neuromuscular disorder characterized by early contractures, slowly progressive muscular weakness, and life-threatening heart conduction disturbances that can develop into a cardiomyopathy. There is wide intrafamilial and interfamilial clinical variability. Genetically, X-linked recessive (EMD1), autosomal dominant (EMD2), and autosomal recessive (EMD3) forms can be distinguished, which are associated with mutations in the STA, LMNA, SYNE1, SYNE2, and FHL1 genes. Only approximately 46% of unrelated EDMD patients have a mutation in the genes mentioned above, pointing to further genetic heterogeneity in EDMD.  相似文献   

4.
Alport syndrome (ATS) is a progressive hereditary nephropathy characterized by hematuria and/or proteinuria with structural defects of the glomerular basement membrane. It can be associated with extrarenal manifestations (high-tone sensorineural hearing loss and ocular abnormalities). Somatic mutations in COL4A5 (X-linked), COL4A3 and COL4A4 genes (both autosomal recessive and autosomal dominant) cause Alport syndrome. Somatic mosaicism in Alport patients is very rare. The reason for this may be due to the difficulty of detection.  相似文献   

5.
Mutation hot spots in 5q31-linked corneal dystrophies.   总被引:13,自引:0,他引:13       下载免费PDF全文
Mutations in the BIGH3 gene on chromosome 5q31 cause four distinct autosomal dominant diseases of the human cornea: granular (Groenouw type I), Reis-Bücklers, lattice type I, and Avellino corneal dystrophies. All four diseases are characterized by both progressive accumulation of corneal deposits and eventual loss of vision. We have identified a specific recurrent missense mutation for each type of dystrophy, in 10 independently ascertained families. Genotype analysis with microsatellite markers surrounding the BIGH3 locus was performed in these 10 families and in 5 families reported previously. The affected haplotype could be determined in 10 of the 15 families and was different in each family. These data indicate that R555W, R124C, and R124H mutations occurred independently in several ethnic groups and that these mutations do not reflect a putative founder effect. Furthermore, this study confirms the specific importance of the R124 and R555 amino acids in the pathogenesis of autosomal dominant corneal dystrophies linked to 5q.  相似文献   

6.
The anterior ocular surface comprises the cornea, conjunctiva and a narrow intermediate region called the limbus. It is widely accepted that the corneal epithelium is maintained by stem cells but different hypotheses propose that the stem cells that maintain the mouse corneal epithelium during normal homeostasis are located either in the basal limbal epithelium or throughout the basal corneal epithelium. There are no specific markers to help test these alternatives and new methods are required to distinguish between them. We observed that KRT5LacZ/− transgenic mice produced rare β-galactosidase (β-gal)-positive radial stripes in the corneal epithelium. These stripes are likely to be clonal lineages of cells derived from stem cells, so they provide a lineage marker for actively proliferating stem cells. The distributions of the β-gal-positive radial stripes suggested they extended centripetally from the limbus, supporting the limbal epithelial stem cell (LESC) hypothesis. Stripe frequency declined between 15 and 30 weeks, which predicts a reduction in stem cell function with age. Pax6+/−, KRT5LacZ/− corneas had small patches rather than stripes, which confirms that corneal maintenance is abnormal in Pax6+/− mice.  相似文献   

7.
TGFBI gene mutations cause corneal stromal dystrophies of autosomal dominant inheritance. The most frequent complication of stromal dystrophies is recurrent corneal erosion with varying degree of accompanying inflammation. IL-1, IL-6 and IL-8 are main cytokines involved in corneal erosion healing. This study aimed to investigate the association between IL1B gene ?511C/T, IL6 gene ?174G/C and IL8 gene ?781C/T polymorphisms and risk of recurrent erosion development in patients with hereditary corneal stromal dystrophies. A trend to decrease of IL1B gene ?511TT genotype frequency in group with erosion (3.7%) comparing to control (6.7%) was observed. IL6 gene ?174C allele carriers frequency in control group (65.9%) was significantly (P < 0.05) lower comparing to patients with erosion (80.5%). Frequency of IL8 ?781TT genotype was significantly (P < 0.05) lower in the group with erosion (10.7%) comparing to patients without erosion (30.8%) and control (25%). IL6 gene ?174C allele may be considered as genetic marker of corneal erosion risk in patients with hereditary stromal corneal dystrophies, whereas IL8 ?781TT genotype is associated with negative recurrent erosion prognosis in such patients.  相似文献   

8.
Sarcoglycanopathies are a group of autosomal recessive limb-girdle muscular dystrophies (LGMD) caused by mutations in sarcoglycan genes: SGCA (LGMD 2D, MIM 600119), SGCB (LGMD 2E, MIM 604286), SGCG (LGMD 2C, MIM 353700), and SGCD (LGMD 2F, MIM 601287). These genes encode four transmembrane sarcoglycan subunits participating in formation of the large sarcolemmal dystrophin- glycoprotein complex. Clinical symptoms of sarcoglycanopathies resemble the ones in Duchenne/Becker muscular dystrophy and several autosomal recessive LGMD, which causes difficulties in the differential diagnostics between these diseases. This review covers the main aspects of sarcoglycanopathies, such as etiology, spectrum of mutations, clinical features and diagnostics. In addition, we review the fundamental pathogenesis mechanisms leading to sarcoglycanopathies, which can also help to understand the potential options for treatment for patients with muscular dystrophies.  相似文献   

9.
Inherited retinal dystrophies are Mendelian neurodegenerative conditions classified as pigmentary retinopathies, macular dystrophies and others. Over a 21-year period, from 1990 to 2011, we have screened in Montpellier 107 genes in 609 families and have identified a causal mutation in 68.5% of them. Following a gene candidate approach, we established that RPE65, the isomerohydrolase of the visual cycle, is responsible for severe childhood blindness (Leber congenital amaurosis or early onset retinal dystrophy). In an ongoing study, we screened the genes in a series of 283 families with dominant retinitis pigmentosa and we have estimated that 80% of the families have a mutation in a known gene. A similar study is currently undergoing for autosomal recessive retinitis pigmentosa. Finally, we have identified IMPG1 as a responsible gene for rare cases of macular vitelliform dystrophy with a dominant or recessive inheritance.  相似文献   

10.
Cone-rod dystrophies (CORDs) represent a heterogeneous group of monogenic diseases leading to early impairment of vision. The majority of CORD entities show autosomal modes of inheritance and X-linked traits are comparably rare. So far, three X-chromosomal entities were reported (CORDX1, -X2 and -X3). In this study, we analysed a large family of German origin with solely affected males over three generations showing a CORDX-like phenotype. Due to the heterogeneity of cone-rod dystrophies, we performed a combined linkage and X-exome sequencing approach and identified a novel large intragenic in-frame deletion encompassing exons 18 to 26 within the CACNA1F gene. CACNA1F is described causative for CORDX3 in a single family originating from Finland and alterations in this gene have not yet been reported in other CORDX pedigrees. Our data independently confirm CACNA1F as the causative gene for CORDX3-like phenotypes and detailed clinical characterization of the family expands the knowledge about the phenotypic spectrum of deleterious CACNA1F alterations.  相似文献   

11.
Physiological studies have demonstrated that ions, as well as large molecules such as hemoglobin or fluorescein, can diffuse across and within the cornea. Most of the substrates for corneal metabolism are obtained from aqueous humor filling the anterior chamber. In order to receive its nutrients and in order to maintain its normal conditions of hydration, the avascular cornea must transport relatively large amounts of solute and solvent across the cellular layers which cover this structure. It has been suggested in the past that there may be a morphological basis for the transport of large amounts of solvents and solutes by cells by the mechanism of pinocytosis. The use of electron-opaque markers to study fluid movements at the electron microscope magnification level was described by Wissig (29). The present study describes the fine structure of the normal rabbit cornea and the pathways of transport of colloidal particles by the cornea in vivo. Rabbit corneas were exposed in vivo to suspensions of saccharated iron oxide, thorium dioxide, or ferritin by injection of the material into the anterior chamber. In other experiments thorium dioxide or saccharated iron oxide was injected into the corneal stroma, producing a small bleb. Particles presented at the aqueous humor surface of the rabbit corneal endothelium are first attached to the cell surface and then pinocytosed. It appears that the particles are carried around the terminal bar by an intracellular pathway involving the pinocytosis of the particles and their subsequent transport in vesicles to the lateral cell margin basal to the terminal bar. Particles introduced at the basal surface of the endothelium (via blebs in the corneal stroma) are apparently carried through the endothelial cells in membrane-bounded vesicles without appearing in the intercellular space. There appears to be free diffusion of these particles through Descemet's membrane and the corneal stroma. The stromal cells take up large quantities of the particles when blebs are injected into the stroma.  相似文献   

12.
The cornea is a highly specialized transparent tissue which covers the front of the eye. It is a tough tissue responsible for refracting the light and protecting the sensitive internal contents of the eye. The biomechanical properties of the cornea are primarily derived from its extracellular matrix, the stroma. The majority of previous studies have used strip tensile and pressure inflation testing methods to determine material parameters of the corneal stroma. Since these techniques do not allow measurements of the shear properties, there is little information available on transverse shear modulus of the cornea. The primary objectives of the present study were to determine the viscoelastic behavior of the corneal stroma in shear and to investigate the effects of the compressive strain. A thorough knowledge of the shear properties is required for developing better material models for corneal biomechanics. In the present study, torsional shear experiments were conducted at different levels of compressive strain (0–30%) on porcine corneal buttons. First, the range of linear viscoelasticity was determined from strain sweep experiments. Then, frequency sweep experiments with a shear strain amplitude of 0.2% (which was within the region of linear viscoelasticity) were performed. The corneal stroma exhibited viscoelastic properties in shear. The shear storage modulus, G′, and shear loss modulus, G″, were reported as a function of tissue compression. It was found that although both of these parameters were dependent on frequency, shear strain amplitude, and compressive strain, the average shear storage and loss moduli varied from 2 to 8 kPa, and 0.3 to 1.2 kPa, respectively. Therefore, it can be concluded that the transverse shear modulus is of the same order of magnitude as the out-of-plane Young's modulus and is about three orders of magnitude lower than the in-plane Young's modulus.  相似文献   

13.
Mutations in the βIGH3 gene on chromosome 5q31 cause five distinct autosomal dominant corneal dystrophies: granular Groenouw type I, Reis-Bücklers’, lattice type I and IIIA, and Avellino corneal dystrophies. We present here a new mutation of the βIGH3 gene in patients with late-onset lattice corneal dystrophy manifest as a deep stromal opacity. To test the previously reported R124C, R124H, P501T, R555W, and R555Q mutations of the βIGH3 gene, 30 patients and 11 normal relatives from 16 independently ascertained families with lattice corneal dystrophy, 49 patients and 12 normal relatives from 40 independently ascertained families with other corneal dystrophies, and 40 unrelated normal volunteers, were analyzed. A L527R (CTG/CGG) mutation of the βIGH3 gene was found in 6 unrelated patients with lattice corneal dystrophy. A retrospective review of the patients’ records showed that the opacities were deep in the stromal layer and of late onset. The mutation was a heterozygous single base-pair transversion from T to G of the second nucleotide position of codon 527. This caused the substitution of arginine for leucine. These six patients did not have mutations in codons 124, 501, or 555. The L527R mutation was not detected in the other corneal dystrophies or 40 normal volunteers. Although phenotypic variations in the size and shape of the deposits were found, all patients with the L527R mutation showed deposits deep in the stromal layer. We conclude that there are now at least six different mutations that have been detected in the βIGH3 gene on chromosome 5q31 and that lead to corneal dystrophy. Received: 14 April 1998 / Accepted: 10 June 1998  相似文献   

14.
The fine structure of the frog cornea has been studied and compared with that of the rabbit cornea (1, 2) particularly in relation to the uptake and transport of colloidal particles. The frog corneal endothelium does not possess a terminal bar and the fluid space of the intercellular space is apparently continuous with that of the anterior chamber. Colloidal markers (ThO2, Fe2O3) placed in the anterior chamber pass down the intercellular space into the cornea. Markers injected intrastromally diffuse freely in the stroma and Descemet's membrane but pass across the endothelium only via membrane-bounded vesicles. These results are compared with those of similar experiments in the rabbit and it is concluded that the primary pathway for the passage of materials into the cornea is intercellular and that the pinocytotic pathway of the rabbit corneal endothelium (Kaye and Pappas; Kaye et al.) is an adaptation to the presence of a terminal bar. The significance of the separation of inward and outward pathways in terms of corneal metabolism is considered.  相似文献   

15.
Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed.  相似文献   

16.
In vitro studies of the transport of colloidal particles by the cornea were carried out on intact corneas of adult rabbits in a chamber described by Donn, Maurice, and Mills (2) in which the epithelial or the endothelial surface of the cornea was exposed to thorium dioxide or saccharated iron oxide under various conditions. These studies confirmed the results of previous work in vivo and allowed modification of the experimental conditions. Particles are pinocytosed at the apical surface of the corneal endothelium and carried around the terminal bar in membrane-bounded vesicles. Basal to the terminal bar these vesicles fuse with the lateral cell margin and their contents are released into the intercellular space, in which they appear to be carried by a one-way flow down to Descemet's membrane and the corneal stroma. Indications that the endothelial transport is an active process are presented by the different pathways of transport into or out of the corneal stroma, as well as by the approximately 70 per cent reduction in transport activity at low temperatures.  相似文献   

17.
Posterior amorphous corneal dystrophy (PACD) is a rare, autosomal dominant disorder affecting the cornea and iris. Next-generation sequencing of the previously identified PACD linkage interval on chromosome 12q21.33 failed to yield a pathogenic mutation. However, array-based copy number analysis and qPCR were used to detect a hemizygous deletion in the PACD linkage interval containing 4 genes encoding small leucine-rich proteoglycans (SLRPs): KERA, LUM, DCN, and EPYC. Two other unrelated families with PACD also demonstrated deletion of these SLRPs, which play important roles in collagen fibrillogenesis and matrix assembly. Given that these genes are essential to the maintenance of corneal clarity and the observation that knockout murine models display corneal phenotypic similarities to PACD, we provide convincing evidence that PACD is associated with haploinsufficiency of these SLRPs.  相似文献   

18.
Pure hair and nail ectodermal dysplasia (PHNED) comprises a heterogeneous group of rare heritable disorders characterized by brittle hair, hypotrichosis, onychodystrophy and micronychia. Autosomal recessive (AR) PHNED has previously been associated with mutations in either KRT85 or HOXC13 on chromosome 12p11.1-q14.3. We investigated a consanguineous Pakistani family with AR PHNED linked to the keratin gene cluster on 12p11.1 but without detectable mutations in KRT85 and HOXC13. Whole exome sequencing of affected individuals revealed homozygosity for a rare c.821T>C variant (p.Phe274Ser) in the KRT74 gene that segregates AR PHNED in the family. The transition alters the highly conserved Phe274 residue in the coil 1B domain required for long-range dimerization of keratins, suggesting that the mutation compromises the stability of intermediate filaments. Immunohistochemical (IHC) analyses confirmed a strong keratin-74 expression in the nail matrix, the nail bed and the hyponychium of mouse distal digits, as well as in normal human hair follicles. Furthermore, hair follicles and epidermis of an affected family member stained negative for Keratin-74 suggesting a loss of function mechanism mediated by the Phe274Ser substitution. Our observations show for the first time that homozygosity for a KRT74 missense variant may be associated with AR PHNED. Heterozygous KRT74 mutations have previously been associated with autosomal dominant woolly hair/hypotrichosis simplex (ADWH). Thus, our findings expand the phenotypic spectrum associated with KRT74 mutations and imply that a subtype of AR PHNED is allelic with ADWH.  相似文献   

19.
Keratan sulphate (KS) proteoglycans (PGs) are key molecules in the corneal stroma for tissue organisation and transparency. Macular corneal dystrophy (MCD) is a rare, autosomal recessive disease characterised by disturbances in KS expression. MCD is caused by mutations in CHST6, a gene encoding the enzyme responsible for KS sulphation. Sulphated KS is absent in type I disease causing corneal opacity and loss of vision. Genetic studies have highlighted the mutational heterogeneity in MCD, but supportive immunohistochemical studies on corneal KS have previously been limited by the availability of antibodies mostly reactive only with highly sulphated KS epitopes. In this study, we employed four antibodies against specific KS sulphation patterns, including one against unsulphated KS, to investigate their reactivity in a case of MCD compared with normal cornea using high-resolution immunogold electron microscopy. Mutation analysis indicated type I MCD with deletion of the entire open reading frame of CHST6. Contrast enhanced fixation revealed larger PG structures in MCD than normal. Unlike normal cornea, MCD cornea showed positive labelling with antibody to unsulphated KSPG, but was negative with antibodies to sulphated KSPG. These antibodies will thus facilitate high-resolution investigations of phenotypic heterogeneity in support of genetic studies in this disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号