首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli pyridoxine 5'-phosphate oxidase catalyzes the terminal step in the biosynthesis of pyridoxal 5'-phosphate by the FMN oxidation of pyridoxine 5'-phosphate forming FMNH(2) and H(2)O(2). Recent studies have shown that in addition to the active site, pyridoxine 5'-phosphate oxidase contains a non-catalytic site that binds pyridoxal 5'-phosphate tightly. The crystal structure of pyridoxine 5'-phosphate oxidase from E. coli with one or two molecules of pyridoxal 5'-phosphate bound to each monomer has been determined to 2.0 A resolution. One of the pyridoxal 5'-phosphate molecules is clearly bound at the active site with the aldehyde at C4' of pyridoxal 5'-phosphate near N5 of the bound FMN. A protein conformational change has occurred that partially closes the active site. The orientation of the bound pyridoxal 5'-phosphate suggests that the enzyme catalyzes a hydride ion transfer between C4' of pyridoxal 5'-phosphate and N5 of FMN. When the crystals are soaked with excess pyridoxal 5'-phosphate an additional molecule of this cofactor is also bound about 11 A from the active site. A possible tunnel exists between the two sites so that pyridoxal 5'-phosphate formed at the active site may transfer to the non-catalytic site without passing though the solvent.  相似文献   

2.
5-Aminolevulinate synthase is the first enzyme of the heme biosynthetic pathway in animals and some bacteria. Lysine-313 of the mouse erythroid aminolevulinate synthase was recently identified to be linked covalently to the pyridoxal 5'-phosphate cofactor (Ferreira GC, Neame PJ, Dailey HA, 1993, Protein Sci 2:1959-1965). Here we report on the effect of replacement of aminolevulinate synthase lysine-313 by alanine, histidine, and glycine, using site-directed mutagenesis. Mutant enzymes were purified to homogeneity, and the purification yields were similar to those of the wild-type enzyme. Although their absorption spectra indicate that the mutant enzymes bind pyridoxal 5'-phosphate, they bind noncovalently. However, addition of glycine to the mutant enzymes led to the formation of external aldimines. The formation of an external aldimine between the pyridoxal 5'-phosphate cofactor and the glycine substrate is the first step in the mechanism of the aminolevulinate synthase-catalyzed reaction. In contrast, lysine-313 is an essential catalytic residue, because the K313-directed mutant enzymes have no measurable activity. In summary, site-directed mutagenesis of the aminolevulinate synthase active-site lysine-313, to alanine (K313A), histidine (K313H), or glycine (K313G) yields enzymes that bind the pyridoxal 5'-phosphate cofactor and the glycine substrate to produce external aldimines, but which are inactive. This suggests that lysine-313 has a functional role in catalysis.  相似文献   

3.
Glutamate decarboxylase is a pyridoxal 5'-phosphate-dependent enzyme responsible for the irreversible alpha-decarboxylation of glutamate to yield 4-aminobutyrate. In Escherichia coli, as well as in other pathogenic and nonpathogenic enteric bacteria, this enzyme is a structural component of the glutamate-based acid resistance system responsible for cell survival in extremely acidic conditions (pH < 2.5). The contribution of the active-site lysine residue (Lys276) to the catalytic mechanism of E. coli glutamate decarboxylase has been determined. Mutation of Lys276 into alanine or histidine causes alterations in the conformational properties of the protein, which becomes less flexible and more stable. The purified mutants contain very little (K276A) or no (K276H) cofactor at all. However, apoenzyme preparations can be reconstituted with a full complement of coenzyme, which binds tightly but slowly. The observed spectral changes suggest that the cofactor is present at the active site in its hydrated form. Binding of glutamate, as detected by external aldimine formation, occurs at a very slow rate, 400-fold less than that of the reaction between glutamate and pyridoxal 5'-phosphate in solution. Both Lys276 mutants are unable to decarboxylate the substrate, thus preventing detailed investigation of the role of this residue on the catalytic mechanism. Several lines of evidence show that mutation of Lys276 makes the protein less flexible and its active site less accessible to substrate and cofactor.  相似文献   

4.
Apoenzyme samples of aspartate aminotransferase (AspAT) purified from the cytosolic fraction of pig heart were reconstituted with [4'-13C]pyridoxal 5'-phosphate (pyridoxal-P). The 13C NMR spectra of AspAT samples thus generated established the chemical shift of 165.3 ppm for C4' of the coenzyme bound as an internal aldimine with lysine 258 of the enzyme at pH 5. In the absence of ligands the chemical shift of C4' was shown to be pH dependent, shifting 5 ppm upfield to a constant value of 160.2 ppm above pH 8, the resulting pKa of 6.3 in agreement with spectrophotometric titrations. The addition of the competitive inhibitor succinate to the internal aldimine raises the pKa of the imine to 7.8, consistent with the theory of charge neutralization in the active site. In the presence of saturating concentrations of 2-methylaspartic acid the C4' signal of the coenzyme was shown to be invariant with pH and located at 162.7 ppm, midway between the observed chemical shifts of the protonated and unprotonated forms of the internal aldimine. The intermediate chemical shift of the external aldimine complex is thought to reflect the observation of an equilibrium mixture composed of roughly equal populations of the protonated ketoenamine and a dipolar anion species, corresponding to their respective spectral bands at 430 and 360-370 nm. Conversion to the pyridoxamine form was accomplished via reaction of the internal aldimine with L-cysteinesulfinate or by reduction with sodium borohydride, and the resulting C4' chemical shifts were identified by difference spectroscopy. Finally, the line widths of the C4' resonance under the various conditions were measured and qualitatively compared. The results are discussed in terms of the current mechanism and molecular models of the active site of AspAT.  相似文献   

5.
To understand the catalytic mechanism of glycogen phosphorylase (EC 2.4.1.1), pyridoxal(5')phospho(1)-beta-D-glucose was synthesized and examined as a hypothetical intermediate in the catalysis. Pyridoxal phosphoglucose bound stoichiometrically to the cofactor site of rabbit muscle phosphorylase b in a similar mode of binding to the natural cofactor, pyridoxal 5'-phosphate. The rate of binding of pyridoxal phosphoglucose was only 1/100 compared with that of pyridoxal phosphate. The enzyme reconstituted with pyridoxal phosphoglucose showed no enzymatic activity at all even after prolonged incubation of the enzyme with substrates and activator. The present data would contradict participation of the phosphate group of pyridoxal phosphate in a covalent glucosyl-enzyme intermediate even if the covalent intermediate was formed during the catalysis.  相似文献   

6.
Pyridoxal 5′-phosphate (PLP) is a cofactor for dozens of B6 requiring enzymes. PLP reacts with apo-B6 enzymes by forming an aldimine linkage with the ε-amino group of an active site lysine residue, thus yielding the catalytically active holo-B6 enzyme. During protein turnover, the PLP is salvaged by first converting it to pyridoxal by a phosphatase and then back to PLP by pyridoxal kinase. Nonetheless, PLP poses a potential toxicity problem for the cell since its reactive 4′-aldehyde moiety forms covalent adducts with other compounds and non-B6 proteins containing thiol or amino groups. The regulation of PLP homeostasis in the cell is thus an important, yet unresolved issue. In this report, using site-directed mutagenesis, kinetic, spectroscopic and chromatographic studies we show that pyridoxal kinase from E. coli forms a complex with the product PLP to form an inactive enzyme complex. Evidence is presented that, in the inhibited complex, PLP has formed an aldimine bond with an active site lysine residue during catalytic turnover. The rate of dissociation of PLP from the complex is very slow, being only partially released after a 2-hour incubation with PLP phosphatase. Interestingly, the inactive pyridoxal kinase•PLP complex can be partially reactivated by transferring the tightly bound PLP to an apo-B6 enzyme. These results open new perspectives on the mechanism of regulation and role of pyridoxal kinase in the Escherichia coli cell.  相似文献   

7.
L-Vinylglycine (L-VG) is both a substrate for and a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate (ACC) synthase. The ratio of the rate constants for catalytic conversion to alpha-ketobutyrate and ammonia to inactivation is 500/1. The crystal structure of the covalent adduct of the inactivated enzyme was determined at 2.25 Angstroms resolution. The active site contains an external aldimine of the adduct of L-VG with the pyridoxal 5'-phosphate cofactor. The side chain gamma-carbon of L-VG is covalently bound to the epsilon-amino group of Lys273. This species corresponds to one of the two alternatives proposed by Feng and Kirsch [Feng, L. and Kirsch, J.F. (2000) L-Vinylglycine is an alternative substrate as well as a mechanism-based inhibitor of 1-aminocyclopropane-1-carboxylate synthase. Biochemistry 39, 2436-2444] and presumably results from Michael addition to a vinylglycine ketimine intermediate.  相似文献   

8.
Amino acid transformations catalyzed by a number of pyridoxal 5'-phosphate (PLP)-dependent enzymes involve abstraction of the Calpha proton from an external aldimine formed between a substrate and the cofactor leading to the formation of a quinonoid intermediate. Despite the key role played by the quinonoid intermediates in the catalysis by PLP-dependent enzymes, limited accurate information is available about their structures. We trapped the quinonoid intermediates of Citrobacter freundii tyrosine phenol-lyase with L-alanine and L-methionine in the crystalline state and determined their structures at 1.9- and 1.95-A resolution, respectively, by cryo-crystallography. The data reveal a network of protein-PLP-substrate interactions that stabilize the planar geometry of the quinonoid intermediate. In both structures the protein subunits are found in two conformations, open and closed, uncovering the mechanism by which binding of the substrate and restructuring of the active site during its closure protect the quinonoid intermediate from the solvent and bring catalytically important residues into positions suitable for the abstraction of phenol during the beta-elimination of L-tyrosine. In addition, the structural data indicate a mechanism for alanine racemization involving two bases, Lys-257 and a water molecule. These two bases are connected by a hydrogen bonding system allowing internal transfer of the Calpha proton.  相似文献   

9.
Serine hydroxymethyltransferase (SHMT) catalyzes the reversible cleavage of serine to form glycine and single carbon groups that are essential for many biosynthetic pathways. SHMT requires both pyridoxal phosphate (PLP) and tetrahydropteroylpolyglutamate (H4PteGlun) as cofactors, the latter as a carrier of the single carbon group. We describe here the crystal structure at 2.8 A resolution of rabbit cytosolic SHMT (rcSHMT) in two forms: one with the PLP covalently bound as an aldimine to the Nepsilon-amino group of the active site lysine and the other with the aldimine reduced to a secondary amine. The rcSHMT structure closely resembles the structure of human SHMT, confirming its similarity to the alpha-class of PLP enzymes. The structures reported here further permit identification of changes in the PLP group that accompany formation of the geminal diamine complex, the first intermediate in the reaction pathway. On the basis of the current mechanism derived from solution studies and the properties of site mutants, we are able to model the binding of both the serine substrate and the H4PteGlun cofactor. This model explains the properties of several site mutants of SHMT and offers testable hypotheses for a more detailed mechanism of this enzyme.  相似文献   

10.
Tang KH  Harms A  Frey PA 《Biochemistry》2002,41(27):8767-8776
Lysine 5,6-aminomutase (5,6-LAM) catalyzes the interconversion of D-lysine with 2,5-diaminohexanoate and of L-beta-lysine with 3,5-diaminohexanoate. The coenzymes for 5,6-LAM are adenosylcobalamin (AdoCbl) and pyridoxal 5'-phosphate (PLP). In the proposed chemical mechanism, AdoCbl initiates the formation of substrate radicals, and PLP facilitates the radical rearrangement by forming an external aldimine linkage with the epsilon-amino group of a substrate, either D-lysine or L-beta-lysine. In the resting enzyme, an internal aldimine between PLP and an essential lysine in the active site facilitates productive PLP binding and catalysis. We present here biochemical, biophysical, and site-directed mutagenesis experiments, which document the existence of an essential lysine residue in the active site of 5,6-LAM from Porphyromonas gingivalis. Reduction of 5,6-LAM with NaBH(4) rapidly inactivates the enzyme and shifts the electronic absorption band from 420 to 325 nm. This is characteristic of the reduction of an aldimine linkage between the carbonyl group of PLP and the epsilon-amino group of a lysine residue. The reduced peptide was identified by Q-TOF/MS and further confirmed by Q-TOF/MS/MS sequencing. We show that lysine 144 in the small subunit of 5,6-LAM is the essential lysine residue. Lysine 144(beta) is separated by only 11 amino acids from histidine 133(beta), which forms a part of the "base-off"-AdoCbl binding motif. The sequence of the novel PLP-binding motif is conserved in 5,6-LAM from Clostridium sticklandii and P. gingivalis, and it is distinct from all known PLP-binding motifs. Mutation of lysine 144(beta) to glutamine led to K144Q(beta)-5,6-LAM, which displayed no enzymatic activity and no absorption band corresponding to an internal PLP-aldamine. In summary, we introduce a novel PLP-binding motif, the first to be discovered in an AdoCbl-dependent enzyme.  相似文献   

11.
The enzyme mitochondrial aspartate aminotransferase from beef liver is a dimer of identical subunits. The enzymatic activity of the resolved enzyme is restored upon addition of the cofactor pyridoxal 5-phosphate. The binding of 1 molecule of cofactor restores 50% of the original enzymatic activity, whereas the binding of a 2nd molecule of cofactor brings about more than 95% recovery of the catalytic activity. Following addition of 1 mol of pyridoxal-5-P per dimer, three forms of the enzyme may exist in solution: apoenzyme-2 pyridoxal 5'-phosphate, apoenzyme-1 pyridoxal 5'-phosphate, and apoenzyme. The enzyme species are separated by affinity chromatography and the following distribution was found: apoenzyme-2 pyridoxal 5'-phosphate/apoenzyme-1 pytidoxal 5'-phosphate/apoenzyme, 2/6/2. Similar distribution was observed after reduction with NaBH4 of the mixture containing apoenzyme and pyridoxal-5-P at a mixing ratio of 1:1. Fluorometric titrations conducted on samples of apoenzyme and apoenzyme-1 pyridoxal 5'-phosphate reveal that the enzyme species display identical affinity towards the inhibitor 4-pyridoxic-5-P (KD equals 1.1 times 10- minus 6 M). It is concluded that the binding of the cofactor to one of the catalytic sites does not affect the affinity of the second site for the inhibitor. These results, obtained by two independent methods, lend strong support to the hypothesis that the two subunits of the enzyme function independently.  相似文献   

12.
Chemical modification of arginine and lysine residues of bovine heart 2-oxoglutarate dehydrogenase with phenylglyoxal and pyridoxal 5'-phosphate inactivated the enzyme, indicating the importance of these residues for the catalysis. Inactivation caused by pyridoxal 5'-phosphate was prevented in the presence of thiamine pyrophosphate and Mg2+ allowing the assumption that lysine residues participate in binding of the cofactor.  相似文献   

13.
The cofactor pyridoxal phosphate bound through an aldimine linkage to lysine residues of the enzyme cystathionase (L-Cystathione cysteine-lyase (deaminating), EC 4.4.1.1) is very stable to irradiation with light of 420 nm. The catalytic function of the enzyme remains unaffected indicating that the cofactor is not an efficient photosensitizer of essential amino acid residues. This unusual stability of the cofactor to irradiation can be ascribed to the presence of aldimine linkages as demonstrated by studies conducted on model compounds. The binding of a reversible inhibitor (L-allylglycine) to the catalytic site of the enzyme does not facilitate photooxidation of the cofactor. On the contrary, irradiation of the cofactor in the presence of the inhibitor results in photodestruction of the inhibitor.  相似文献   

14.
P F Guidinger  T Nowak 《Biochemistry》1991,30(36):8851-8861
The participation of lysine in the catalysis by avian liver phosphoenolpyruvate carboxykinase was studied by chemical modification and by a characterization of the modified enzyme. The rate of inactivation by 2,4-pentanedione is pseudo-first-order and linearly dependent on reagent concentration with a second-order rate constant of 0.36 +/- 0.025 M-1 min-1. Inactivation by pyridoxal 5'-phosphate of the reversible reaction catalyzed by phosphoenolpyruvate carboxykinase follows bimolecular kinetics with a second-order rate constant of 7700 +/- 860 M-1 min-1. A second-order rate constant of inactivation for the irreversible reaction catalyzed by the enzyme is 1434 +/- 110 M-1 min-1. Treatment of the enzyme with pyridoxal 5'-phosphate gives incorporation of 1 mol of pyridoxal 5'-phosphate per mole of enzyme or one lysine residue modified concomitant with 100% loss in activity. A stoichiometry of 1:1 is observed when either the reversible or the irreversible reactions catalyzed by the enzyme are monitored. A study of kobs vs pH suggests this active-site lysine has a pKa of 8.1 and a pH-independent rate constant of inactivation of 47,700 M-1 min-1. The phosphate-containing substrates IDP, ITP, and phosphoenolpyruvate offer almost complete protection against inactivation by pyridoxal 5'-phosphate. Modified, inactive enzyme exhibits little change in Mn2+ binding as shown by EPR. Proton relaxation rate measurements suggest that pyridoxal 5'-phosphate modification alters binding of the phosphate-containing substrates. 31P NMR relaxation rate measurements show altered binding of the substrates in the ternary enzyme.Mn2+.substrate complex. Circular dichroism studies show little change in secondary structure of pyridoxal 5'-phosphate modified phosphoenolpyruvate carboxykinase. These results indicate that avian liver phosphoenolpyruvate carboxykinase has one reactive lysine at the active site and it is involved in the binding and activation of the phosphate-containing substrates.  相似文献   

15.
Asn185 is an invariant residue in all known sequences of TPL and of closely related tryptophanase and it may be aligned with the Asn194 in aspartate aminotransferase. According to X-ray data, in the holoenzyme and in the Michaelis complex Asn185 does not interact with the cofactor pyridoxal 5'-phosphate, but in the external aldimine a conformational change occurs which is accompanied by formation of a hydrogen bond between Asn185 and the oxygen atom in position 3 of the cofactor. The substitution of Asn185 in TPL by alanine results in a mutant N185A TPL of moderate residual activity (2%) with respect to adequate substrates, L-tyrosine and 3-fluoro-L-tyrosine. The affinities of the mutant enzyme for various amino acid substrates and inhibitors, studied by both steady-state and rapid kinetic techniques, were lower than for the wild-type TPL. This effect mainly results from destabilization of the quinonoid intermediate, and it is therefore concluded that the hydrogen bond between Asn185 and the oxygen at the C-3 position of the cofactor is maintained in the quinonoid intermediate. The relative destabilization of the quinonoid intermediate and external aldimine leads to the formation of large amounts of gem-diamine in reactions of N185A TPL with 3-fluoro-L-tyrosine and L-phenylalanine. For the reaction with 3-fluoro-L-tyrosine it was first possible to determine kinetic parameters of gem-diamine formation by the stopped-flow method. For the reactions of N185A TPL with substrates bearing good leaving groups the observed values of k(cat) could be accounted for by taking into consideration two effects: the decrease in the quinonoid content under steady-state conditions and the increase in the quinonoid reactivity in a beta-elimination reaction. Both effects are due to destabilization of the quinonoid and they counterbalance each other. Multiple kinetic isotope effect studies on the reactions of N185A TPL with suitable substrates, L-tyrosine and 3-fluoro-L-tyrosine, show that the principal mechanism of catalysis, suggested previously for the wild-type enzyme, does not change. In the framework of this mechanism the observed considerable decrease in k(cat) values for reactions of N185A TPL with L-tyrosine and 3-fluoro-L-tyrosine may be ascribed to participation of Asn185 in additional stabilization of the keto quinonoid intermediate.  相似文献   

16.
Serine hydroxymethyltransferase has a conserved histidine residue (His-228) next to the lysine residue (Lys-229) which forms the internal aldimine with pyridoxal 5'-phosphate. This histidine residue is also conserved at the equivalent position in all amino acid decarboxylases and tryptophan synthase. Two mutant forms of Escherichia coli serine hydroxymethyltransferase, H228N and H228D, were constructed, expressed, and purified. The properties of the wild type and mutant enzymes were studied with substrates and substrate analogs by differential scanning calorimetry, circular dichroism, steady state kinetics, and rapid reaction kinetics. The conclusions of these studies were that His-228 plays an important role in the binding and reactivity of the hydroxymethyl group of serine in the one-carbon-binding site. The mutant enzymes utilize substrates and substrate analogs more effectively for a variety of alternate non-physiological reactions compared to the wild type enzyme. As one example, the mutant enzymes cleave L-serine to glycine and formaldehyde when tetrahydropyteroylglutamate is replaced by 5-formyltetrahydropteroylglutamate. The released formaldehyde inactivates these mutant enzymes. The loss of integrity of the one-carbon-binding site with L-serine in the two mutant forms of the enzyme may be the result of these enzymes not undergoing a conformational change to a closed form of the active site when serine forms the external aldimine complex.  相似文献   

17.
To examine the role of lysyl residues in the activity of the enzyme, phosphoglyceromutase (PGM) from chicken breast muscle was chemically modified with trinitrobenzenesulfonate (TNBS) and pyridoxal 5'-phosphate. Trinitrophenylation resulted in modification of about nine lysines per mole of PGM with almost complete activity loss. Substrate (3-PGA) offered some protection to TNBS inactivation but cofactor (2,3-DPGA) did not. Reduction of the Schiff's base complex between pyridoxal 5'-phosphate and PGM gave irreversible inactivation of the enzyme. Inactivation was due to incorporation of 1 mol of pyridoxal 5'-phosphate per mole of PGM dimer through the epsilon-amino group of a lysyl residue. The effect of pyridoxal 5'-phosphate was specific for intact native enzyme and reaction with only one lysine per dimer was not due to induced conformational changes nor to dissociation of the reacted enzyme. 3-PGA prevented much of the reaction with pyridoxal 5'-phosphate with preservation of 70% of the activity and was a competitive inhibitor of the active site directed reagent. Cofactor (2,3-DPGA) acting noncompetitively, reduced the rate at which inactivation occurred with pyridoxal 5'-phosphate. Incorporation of 2,3-[32P]DPGA into PGM irreversibly inactivated with pyridoxal 5'-phosphate and NaBH4 was incomplete indicating hindrance to phosphorylation in the modified enzyme. The results indicate that a lysyl residue is located at or near the active site of PGM and that it is probably involved in the binding of 3-PGA.  相似文献   

18.
The meso-diaminopimelate decarboxylase (DAPDC, EC 4.1.1.20) catalyzes the final step of L-lysine biosynthesis in bacteria and is regarded as a target for the discovery of antibiotics. Here we report the 2.3A crystal structure of DAPDC from Helicobacter pylori (HpDAPDC). The structure, in which the product L-lysine forms a Schiff base with the cofactor pyridoxal 5'-phosphate, provides structural insight into the substrate specificity and catalytic mechanism of the enzyme, and implies that the carboxyl to be cleaved locates at the si face of the cofactor. To our knowledge, this might be the first reported external aldimine of DAPDC. Moreover, the active site loop of HpDAPDC is in a "down" conformation and shields the ligand from solvent. Mutations of Ile(148) from the loop greatly impaired the catalytic efficiency. Combining the structural analysis of the I148L mutant, we hypothesize that HpDAPDC adopts an induced-fit catalytic mechanism in which this loop cycles through "down" and "up" conformations to stabilize intermediates and release product, respectively. Our work is expected to provide clues for designing specific inhibitors of DAPDC.  相似文献   

19.
Vitamin B(6) is a generic term referring to pyridoxine, pyridoxamine, pyridoxal and their related phosphorylated forms. Pyridoxal 5'-phosphate is the catalytically active form of vitamin B(6), and acts as cofactor in more than 140 different enzyme reactions. In animals, pyridoxal 5'-phosphate is recycled from food and from degraded B(6)-enzymes in a "salvage pathway", which essentially involves two ubiquitous enzymes: an ATP-dependent pyridoxal kinase and an FMN-dependent pyridoxine 5'-phosphate oxidase. Once it is made, pyridoxal 5'-phosphate is targeted to the dozens of different apo-B(6) enzymes that are being synthesized in the cell. The mechanism and regulation of the salvage pathway and the mechanism of addition of pyridoxal 5'-phosphate to the apo-B(6)-enzymes are poorly understood and represent a very challenging research field. Pyridoxal kinase and pyridoxine 5'-phosphate oxidase play kinetic roles in regulating the level of pyridoxal 5'-phosphate formation. Deficiency of pyridoxal 5'-phosphate due to inborn defects of these enzymes seems to be involved in several neurological pathologies. In addition, inhibition of pyridoxal kinase activity by several pharmaceutical and natural compounds is known to lead to pyridoxal 5'-phosphate deficiency. Understanding the exact role of vitamin B(6) in these pathologies requires a better knowledge on the metabolism and homeostasis of the vitamin. This article summarizes the current knowledge on structural, kinetic and regulation features of the two enzymes involved in the PLP salvage pathway. We also discuss the proposal that newly formed PLP may be transferred from either enzyme to apo-B(6)-enzymes by direct channeling, an efficient, exclusive, and protected means of delivery of the highly reactive PLP. This new perspective may lead to novel and interesting findings, as well as serve as a model system for the study of macromolecular channeling. This article is part of a Special Issue entitled: Pyridoxal Phosphate Enzymology.  相似文献   

20.
Jhee KH  Niks D  McPhie P  Dunn MF  Miles EW 《Biochemistry》2002,41(6):1828-1835
Our studies of the reaction mechanism of cystathionine beta-synthase from yeast (Saccharomyces cerevisiae) are facilitated by the spectroscopic properties of the pyridoxal phosphate coenzyme. The enzyme catalyzes the reaction of L-serine with L-homocysteine to form L-cystathionine through a series of pyridoxal phosphate intermediates. In this work, we explore the substrate specificity of the enzyme by use of substrate analogues combined with kinetic measurements under pre-steady-state conditions and with circular dichroism and fluorescence spectroscopy under steady-state conditions. Our results show that L-allothreonine, but not L-threonine, serves as an effective substrate. L-Allothreonine reacts with the pyridoxal phosphate cofactor to form a stable 3-methyl aminoacrylate intermediate that absorbs maximally at 446 nm. The rapid-scanning stopped-flow results show that the binding of L-allothreonine as the external aldimine is faster than formation of the 3-methyl aminoacrylate intermediate. The 3-methyl aminoacrylate intermediate reacts with L-homocysteine to form a new amino acid, 3-methyl-L-cystathionine, which was characterized by nuclear magnetic resonance spectroscopy. This new amino acid may be a useful analogue of L-cystathionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号