首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose turnover and its regulation were studied during and after two identical bouts of intense exhaustive exercise separated by 1 h to define differences in response. Six lean young postabsorptive male subjects exercised at approximately 100% maximal O2 uptake (3.7 +/- 0.3 l/min) for 13.0 +/- 0.7 min for the first (EX1) and 13.2 +/- 0.8 min for the second (EX2) bout. Plasma glucose increased during EX1 and peaked at 7.0 +/- 0.6 mmol/l in early recovery but to 5.8 +/- 0.5 mmol/l (P less than 0.05) after EX2, and both the hyperglycemic and the hyperinsulinemic responses were less after EX2 (P less than 0.015, analysis of variance). The hyperglycemia was due to lesser increments in glucose utilization (Rd) (3-fold resting) than glucose production (Ra) (7-fold) toward exhaustion and for 7 min of recovery. The rise in Rd was more rapid (P less than 0.05) and metabolic clearance rate was greater during (P = 0.015) and from 9 to 60 min after EX2, and Ra also remained higher during recovery (P less than 0.05). Marked and similar increments in plasma norepinephrine (18-fold) and epinephrine (14-fold) occurred with both bouts. Plasma glucagon increments were small and not different. Therefore, 1) more circulating glucose was used with EX2, 2) greater metabolic clearance rate during and after EX2 suggests local muscle adaptations due to EX1, and 3) significant correlations (P less than 0.002) between plasma norepinephrine and Ra (r = 0.82) and Ra - Rd (r = 0.52) and between epinephrine and Ra (r = 0.71) and Ra - Rd (r = 0.48) suggest a major regulatory role for the catecholamine responses.  相似文献   

2.
Maximal dynamic exercise results in a postexercise hyperglycemia in healthy young subjects. We investigated the influence of maximal exercise on glucoregulation in non-insulin-dependent diabetic subjects (NIDDM). Seven NIDDM and seven healthy control males bicycled 7 min at 60% of their maximal O2 consumption (VO2max), 3 min at 100% VO2max, and 2 min at 110% VO2max. In both groups, glucose production (Ra) increased more with exercise than did glucose uptake (Rd) and, accordingly, plasma glucose increased. However, in NIDDM subjects the increase in Ra was hastened and Rd inhibited compared with controls, so the increase in glucose occurred earlier and was greater [147 +/- 21 to 169 +/- 19 (30 min postexercise) vs. 90 +/- 4 to 100 +/- 5 (SE) mg/dl (10 min postexercise), P less than 0.05]. Glucose levels remained elevated for greater than 60 min postexercise in both groups. Glucose clearance increased during exercise but decreased postexercise to or below (NIDDM, P less than 0.05) basal levels, despite increased insulin levels (P less than 0.05). Plasma epinephrine and glucagon responses to exercise were higher in NIDDM than in control subjects (P less than 0.05). By use of the insulin clamp technique at 40 microU.m-2.min-1 of insulin with plasma glucose maintained at basal levels, glucose disposal in NIDDM subjects, but not in controls, was enhanced 24 h after exercise. It is concluded that, because of exaggerated counter-regulatory hormonal responses, maximal dynamic exercise results in a 60-min period of postexercise hyperglycemia and hyperinsulinemia in NIDDM. However, this event is followed by a period of increased insulin effect on Rd that is present 24 h after exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We determined the effect of 20 nights of live high, train low (LHTL) hypoxic exposure on lactate kinetics, monocarboxylate lactate transporter proteins (MCT1 and MCT4), and muscle in vitro buffering capacity (betam) in 29 well-trained cyclists and triathletes. Subjects were divided into one of three groups: 20 consecutive nights of hypoxic exposure (LHTLc), 20 nights of intermittent hypoxic exposure [four 5-night blocks of hypoxia, each interspersed with 2 nights of normoxia (LHTLi)], or control (Con). Rates of lactate appearance (Ra), disappearance (Rd), and oxidation (Rox) were determined from a primed, continuous infusion of l-[U-14C]lactic acid tracer during 90 min of steady-state exercise [60 min at 65% peak O2 uptake (VO(2 peak)) followed by 30 min at 85% VO(2 peak)]. A resting muscle biopsy was taken before and after 20 nights of LHTL for the determination of betam and MCT1 and MCT4 protein abundance. Ra during the first 60 min of exercise was not different between groups. During the last 25 min of exercise at 85% VO(2 peak), Ra was higher compared with exercise at 65% of VO(2 peak) and was decreased in LHTLc (P < 0.05) compared with the other groups. Rd followed a similar pattern to Ra. Although Rox was significantly increased during exercise at 85% compared with 65% of VO(2 peak), there were no differences between the three groups or across trials. There was no effect of hypoxic exposure on betam or MCT1 and MCT4 protein abundance. We conclude that 20 consecutive nights of hypoxia exposure decreased whole body Ra during intense exercise in well-trained athletes. However, muscle markers of lactate metabolism and pH regulation were unchanged by the LHTL intervention.  相似文献   

4.
The early responses of endogenous glucose production (Ra), glucose utilization (Rd), and glucoregulatory hormones to moderate treadmill exercise (12% incline, 100 m/min, 60 min) were examined in dogs. Rd increased rapidly and progressively from the start of exercise. The change in Ra, as estimated with a variable-volume model of glucose kinetics, was biphasic, with an abrupt increase by 8.5 +/- 2.3 mumol.min-1.kg-1, followed by a delayed further increase that matched Rd 11-22 min after the onset of exercise. The plasma glucagon-to-insulin molar ratio fell slightly at the onset of exercise and then increased gradually. The glucagon-to-insulin ratio was correlated with Ra over the entire exercise period (r = 0.63, P less than 0.0001), but not during the early part of exercise, when Ra increased rapidly. The catecholamine- (epinephrine plus norepinephrine) to-insulin molar ratio was correlated with Ra during the early period (r = 0.52, P less than 0.01) and over the entire period of exercise (r = 0.66, P less than 0.0001). Our results confirm previous demonstrations that the glucagon-to-insulin molar ratio is an important regulator of Ra during exercise. We hypothesize that the catecholamine-to-insulin molar ratio is important during the early period of exercise and possibly during late exercise as an additional regulatory factor to the glucagon-to-insulin molar ratio.  相似文献   

5.
Important role of glucagon during exercise in diabetic dogs   总被引:2,自引:0,他引:2  
To define the role of immunoreactive glucagon (IRG) during exercise in diabetes, 12 insulin-deprived alloxan-diabetic (A-D) dogs were run for 90 min (100 m/min, 12 degrees) with or without somatostatin (St 0.5 microgram . kg-1 . min-1). Compared with normal dogs, A-D dogs were characterized by similar hepatic glucose production (Ra), lower glucose metabolic clearance, and higher plasma glucose and free fatty acid levels during rest and exercise. In A-D dogs IRG was greater at rest and exhibited a threefold greater exercise increment than controls, whereas immunoreactive insulin (IRI) was reduced by 68% at rest but had similar values to controls during exercise. Basal norepinephrine, epinephrine, cortisol, and lactate levels were similar in normal and A-D dogs. However, exercise increments in norepinephrine, cortisol, and lactate were higher in A-D dogs. When St was infused during exercise in the A-D dogs, IRG was suppressed by 432 +/- 146 pg/ml below basal and far below the exercise response in A-D controls (delta = 645 +/- 153 pg/ml). IRI was reduced by 1.8 +/- 0.2 microU/ml with St. With IRG suppression the increase in Ra seen in exercising A-D controls (delta = 4.8 +/- 1.6 mg . kg-1 . min-1) was virtually abolished, and glycemia fell by 104 to 133 +/- 37 mg/dl. Owing to this decrease in glycemia, the increase in glucose disappearance was attenuated. Despite the large fall in glucose during IRG suppression, counterregulatory increases were not excessive compared with A-D controls. In fact, as glucose levels approached euglycemia, the increments in norepinephrine and cortisol were reduced to levels similar to those seen in normal exercising dogs. In conclusion, IRG suppression during exercise in A-D dogs almost completely obviated the increase in Ra, resulting in a large decrease in plasma glucose. Despite this large fall in glucose, there was no excess counterregulation, since glucose concentrations never reached the hypoglycemic range.  相似文献   

6.
To study the effect of increasing amounts of exercising muscle mass on the relationship between glucose mobilization and peripheral glucose uptake, seven young men (23-28 yr) bicycled for 70 min at a work load of 55-60% VO2max. From minute 30 to 50, arm cranking was added and total work load increased to 82 +/- 4% VO2max. During leg exercise, hepatic glucose production (Ra) increased in parallel with peripheral glucose uptake (Rd) and euglycemia was maintained. During arm + leg exercise, Ra increased more than Rd and accordingly plasma glucose increased from 5.11 +/- 0.22 to 8.00 +/- 0.66 mmol/l (P less than 0.05). Plasma catecholamines increased three- to four-fold more during arm + leg exercise than during leg exercise. Leg glucose uptake increased with time regardless of arm cranking. Net leg lactate release during leg exercise was reverted to a net leg lactate uptake during arm + leg exercise. The rate of glycogen breakdown in exercising leg muscle was not altered by addition of arm cranking. In conclusion, when large amounts of muscle mass are active, plasma catecholamines increase sharply and mobilization of glucose exceeds peripheral glucose uptake. This indicates that mechanisms other than feedback regulation to maintain euglycemia are involved in hormonal and substrate mobilization during intense exercise in humans.  相似文献   

7.
Numerous studies from our and other laboratories have shown that women have a lower respiratory exchange ratio (RER) during exercise than equally trained men, indicating a greater reliance on fat oxidation. Differences in estrogen concentration between men and women likely play a role in this sex difference. Differing estrogen and progesterone concentrations during the follicular (FP) and luteal (LP) phases of the female menstrual cycle suggest that fuel use may also vary between phases. The purpose of the current study was to determine the effect of menstrual cycle phase and sex upon glucose turnover and muscle glycogen utilization during endurance exercise. Healthy, recreationally active young women (n = 13) and men (n = 11) underwent a primed constant infusion of [6,6-2H]glucose with muscle biopsies taken before and after a 90-min cycling bout at 65% peak O2 consumption. LP women had lower glucose rate of appearance (Ra, P = 0.03), rate of disappearance (Rd, P = 0.03), and metabolic clearance rate (MCR, P = 0.04) at 90 min of exercise and lower proglycogen (P = 0.04), macroglycogen (P = 0.04), and total glycogen (P = 0.02) utilization during exercise compared with FP women. Men had a higher RER (P = 0.02), glucose Ra (P = 0.03), Rd (P = 0.03), and MCR (P = 0.01) during exercise compared with FP women, and men had a higher RER at 75 and 90 min of exercise (P = 0.04), glucose Ra (P = 0.01), Rd (P = 0.01), and MCR (P = 0.001) and a greater PG utilization (P = 0.05) compared with LP women. We conclude that sex, and to a lesser extent menstrual cycle, influence glucose turnover and glycogen utilization during moderate-intensity endurance exercise.  相似文献   

8.
In this study we compared substrate oxidation and muscle oxygen availability during sustained intermittent intense and continuous submaximal exercise with similar overall (i.e. work and recovery) oxygen consumption (VO2). Physically active subjects (n = 7) completed 90 min of an intermittent intense (12 s work:18 s recovery) and a continuous submaximal treadmill running protocol on separate days. In another experiment (n = 5) we compared oxygen availability in the vastus lateralis muscle between these two exercise protocols using near-infrared spectroscopy. Initially, overall VO(2) (i.e. work and recovery) was matched, and from 37.5 min to 67.5 min of exercise was similar, although slightly higher during continuous exercise (8%; P < 0.05). Energy expenditure was constant (22.5-90 min of exercise) and was not different in intermittent intense [0.81 (0.01) kJ x min(-1). kg(-1)] and continuous submaximal [0.85 (0.01) kJ x min(-1) x kg(-1)] exercise. Overall exercise intensity, represented as a proportion of peak aerobic power (VO2(peak)), was 68.1 (2.5)% VO2(peak) and 71.8 (1.8)% VO2(peak) for intermittent and continuous exercise protocols, respectively. Fat oxidation was almost 3 times lower (P < 0.05) and carbohydrate oxidation was approximately 1.2 times higher (P < 0.05) during intermittent compared to continuous exercise, despite the same overall energy expenditure. Capillary plasma lactate was constant from 15 to 90 min of exercise, and pyruvate was constant from 15 to 75 min, although both were higher (P < 0.0001, lactate; P < 0.001, pyruvate) during intermittent [5.05 (0.28) mM, 200 (7) microM, respectively] compared to continuous exercise [2.41 (0.10) mM, 114 (4) microM, respectively]. There was no difference between protocols for either plasma glycerol or non-esterified fatty acids. The decrease in muscle oxygenation during work periods of intermittent exercise resulted in a lower nadir oxygenation [54.62 (0.41)%] compared to continuous exercise [58.82 (0.21)%, P < 0.001]. The decline in oxygenation was correlated with treadmill speed (r = 0.72; P < 0.05). These results show a difference in substrate utilisation and muscle oxygen availability during sustained intermittent intense and continuous submaximal exercise, despite a similar overall VO(2) and identical energy expenditure.  相似文献   

9.
Carbohydrate metabolism in exercise, including regulation of glucose production, was studied by isotope-dilution methods, and these were evaluated. Chronically catheterized rats were examined before, during, and after 45 min of running at either low (LIE) or moderate (MIE) intensity. Glucose production (Ra) and disappearance (Rd), as well as muscular glycogen breakdown (Gly), were estimated by primed constant infusions of [3-3H]- and [U-14 C]glucose, and pyruvate oxidation was estimated by sampling of expired 14CO2. During exercise, Ra increased faster than Rd and was, as were steady-state glucose concentration (G) and Gly, directly related to exercise intensity. During recovery Ra and G decreased rapidly, but after MIE, G showed a rebound increase. 14C estimates and chemical measurements sometimes disagreed. Methodological evaluation showed marked incorporation of label in glycogen, lipid, and protein at rest and mobilization of label during exercise. 14CO2 recovery in expired air ranged from only 50% at rest to 77% during MIE. In conclusion, during exercise, mobilization of hepatic glycogen is a primary event and not secondary to increased muscular demand. During and after exercise, plasma glycogen is not precisely controlled at euglycemic levels. Isotope methods may be used to study carbohydrate metabolism in exercising rats, but the results (especially 14C data) should be interpreted with caution.  相似文献   

10.
Metabolic effects of an overnight fast (postabsorptive state, PA) or a 3.5-day fast (fasted state, F) were compared in eight healthy young men at rest and during exercise to exhaustion at 45% maximum O2 uptake. Glucose rate of appearance (Ra) and disappearance (Rd) were calculated from plasma glucose enrichment during a primed, continuous infusion of [6,6-2H]glucose. Serum substrates and insulin levels were measured and glycogen content of the vastus lateralis was determined in biopsies taken before and after exercise. At rest, whole-body glucose flux (determined by the deuterated tracer) and carbohydrate oxidation (determined from respiratory exchange ratio) were lower in F than PA, but muscle glycogen levels were similar. During exercise, glucose flux, whole-body carbohydrate oxidation, and the rate of muscle glycogen utilization were significantly lower during the fast. In the PA state, glucose Ra and Rd increased together throughout exercise. However, in the F state Ra exceeded Rd during the 1st h of exercise, causing an increase in plasma glucose to levels similar to those of the PA state. The increase in glucose flux was markedly less throughout F exercise. Lower carbohydrate utilization in the F state was accompanied by higher circulating fatty acids and ketone bodies, lower plasma insulin levels, and the maintenance of physical performance reflected by similar time to exhaustion.  相似文献   

11.
As exercise can improve the regulation of glucose and carbohydrate metabolism, it is important to establish biological factors, such as sex, that may influence these outcomes. Glucose kinetics, therefore, were compared between women and men at rest, during exercise, and postexercise. It was hypothesized that glucose flux would be significantly lower in women than men during both the exercise and postexercise periods. Subjects included normal weight, healthy, eumenorrehic women and men, matched for habitual activity level and maximal oxygen uptake per kilogram lean body mass. Testing occurred following 3 days of diet control, with no exercise the day before. Subjects were tested in the overnight-fasted condition with women studied in the midluteal phase of the menstrual cycle. Resting (120 min), exercise (85% lactate threshold, 90 min), and postexercise (180 min) measurements of glucose flux and substrate metabolism were made. During exercise, women had a significantly lower rate of glucose appearance (Ra) (P<0.001) and disappearance (Rd) (P<0.002) compared with men. Maximal values were achieved at 90 min of exercise for both glucose Ra (mean+/-SE: 22.8+/-1.12 micromol.kg body wt-1.min-1 women and 33.6+/-1.79 micromol.kg body wt-1.min-1 men) and glucose Rd (23.2+/-1.26 and 34.1+/-1.71 micromol.kg body wt-1.min-1, respectively). Exercise epinephrine concentration was significantly lower in women compared with men (P<0.02), as was the increment in glucagon from rest to exercise (P<0.04). During the postexercise period, glucose Ra and Rd were also significantly lower in women vs. men (P<0.001), with differences diminishing over time. In conclusion, circulating blood glucose flux was significantly lower during 90 min of moderate exercise, and immediately postexercise, in women compared with men. Sex differences in the glucagon increase to exercise, and/or the epinephrine levels during exercise, may play a role in determining these sex differences in exercise glucose turnover.  相似文献   

12.
To evaluate the effects of endurance training on gluconeogenesis and blood glucose homeostasis, trained as well as untrained short-term-fasted rats were injected with mercaptopicolinic acid (MPA), a gluconeogenic inhibitor, or the injection vehicle. Glucose kinetics were assessed by primed-continuous venous infusion of [U-14C]- and [6-3H]glucose at rest and during submaximal exercise at 13.4 m/min on level grade. Arterial blood was sampled for the determination of blood glucose and lactate concentrations and specific activities. In resting untrained sham-injected rats, blood glucose and lactate were 7.6 +/- 0.2 and 1.3 +/- 0.1 mM, respectively; glucose rate of appearance (Ra) was 71.1 +/- 12.1 mumol.kg-1.min-1. MPA treatment lowered blood glucose, raised lactate, and decreased glucose Ra. Trained animals had significantly higher glucose Ra at rest and during exercise. At rest, trained MPA-treated rats had lower blood glucose, higher blood lactate, and similar glucose Ra and disappearance rates (Rd) than trained sham-injected animals. Exercising sham-injected untrained animals had increased blood glucose and glucose Ra compared with rest. Exercising trained sham-injected rats had increased blood glucose and glucose Ra and Rd but no change in blood lactate compared with untrained sham-injected animals. In the trained animals during exercise, MPA treatment increased blood lactate and decreased blood glucose and glucose Ra and Rd. There was no measurable glucose recycling in trained or untrained MPA-treated animals either at rest or during submaximal exercise. There was no difference in running time to exhaustion between trained and untrained MPA-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
We examined the effects of exercise intensity and a 10-wk cycle ergometer training program [5 days/wk, 1 h, 75% peak oxygen consumption (VO2 peak)] on plasma free fatty acid (FFA) flux, total fat oxidation, and whole body lipolysis in healthy male subjects (n = 10; age = 25.6 +/- 1.0 yr). Two pretraining trials (45 and 65% of VO2 peak) and two posttraining trials (same absolute workload, 65% of old VO2 peak; and same relative workload, 65% of new VO2 peak) were performed by using an infusion of [1-13C]palmitate and [1,1,2,3, 3-2H]glycerol. An additional nine subjects (age 25.4 +/- 0.8 yr) were treated similarly but were infused with [1,1,2,3,3-2H]glycerol and not [1-13C]palmitate. Subjects were studied postabsorptive for 90 min of rest and 1 h of cycling exercise. After training, subjects increased VO2 peak by 9.4 +/- 1.4%. Pretraining, plasma FFA kinetics were inversely related to exercise intensity with rates of appearance (Ra) and disappearance (Rd) being significantly higher at 45 than at 65% VO2 peak (Ra: 8.14 +/- 1.28 vs. 6.64 +/- 0.46, Rd: 8. 03 +/- 1.28 vs. 6.42 +/- 0.41 mol. kg-1. min-1) (P 相似文献   

14.
In a previous study [G. C. M. Beaufort-Krol, J. Takens, M. C. Molenkamp, G. B. Smid, J. J. Meuzelaar, W. G. Zijlstra, and J. R. G. Kuipers. Am. J. Physiol. 275 (Heart Circ. Physiol. 44): H1503-H1512, 1998], a lower systemic O2 supply was found in lambs with aortopulmonary left-to-right shunts. To determine whether the lower systemic O2 supply results in increased anaerobic metabolism, we used [1-13C]lactate to investigate lactate kinetics in eight 7-wk-old lambs with shunts and eight control lambs, at rest and during moderate exercise [treadmill; 50% of peak O2 consumption (VO2)]. The mean left-to-right shunt fraction in the shunt lambs was 55 +/- 3% of pulmonary blood flow. Arterial lactate concentrations and the rate of appearance (Ra) and disappearance (Rd) of lactate were similar in shunt and control lambs, both at rest (lactate: 1, 201 +/- 76 vs. 1,214 +/- 151 micromol/l; Ra = Rd: 12.97 +/- 1.71 vs. 12.55 +/- 1.25 micromol. min-1. kg-1) and during a similar relative workload. We found a positive correlation between Ra and systemic blood flow, O2 supply, and VO2 in both groups of lambs. In conclusion, shunt lambs have similar lactate kinetics as do control lambs, both at rest and during moderate exercise at a similar fraction of their peak VO2, despite a lower systemic O2 supply.  相似文献   

15.
We hypothesized that the increased blood glucose disappearance (Rd) observed during exercise and after acclimatization to high altitude (4,300 m) could be attributed to net glucose uptake (G) by the legs and that the increased arterial lactate concentration and rate of appearance (Ra) on arrival at altitude and subsequent decrease with acclimatization were caused by changes in net muscle lactate release (L). To evaluate these hypotheses, seven healthy males [23 +/- 2 (SE) yr, 72.2 +/- 1.6 kg], on a controlled diet were studied in the postabsorptive condition at sea level, on acute exposure to 4,300 m, and after 3 wk of acclimatization to 4,300 m. Subjects received a primed-continuous infusion of [6,6-D2]glucose (Brooks et al., J. Appl. Physiol. 70: 919-927, 1991) and [3-13C]lactate (Brooks et al., J. Appl. Physiol. 71:333-341, 1991) and rested for a minimum of 90 min, followed immediately by 45 min of exercise at 101 +/- 3 W, which elicited 51.1 +/- 1% of the sea level peak O2 uptake (65 +/- 2% of both acute altitude and acclimatization peak O2 uptake). Glucose and lactate arteriovenous differences across the legs and arms and leg blood flow were measured. Leg G increased during exercise compared with rest, at altitude compared with sea level, and after acclimatization. Leg G accounted for 27-36% of Rd at rest and essentially all glucose Rd during exercise. A shunting of the blood glucose flux to active muscle during exercise at altitude is indicated. With acute altitude exposure, at 5 min of exercise L was elevated compared with sea level or after acclimatization, but from 15 to 45 min of exercise the pattern and magnitude of L from the legs varied and followed neither the pattern nor the magnitude of responses in arterial lactate concentration or Ra. Leg L accounted for 6-65% of lactate Ra at rest and 17-63% during exercise, but the percent Ra from L was not affected by altitude. Tracer-measured lactate extraction by legs accounted for 10-25% of lactate Rd at rest and 31-83% during exercise. Arms released lactate under all conditions except during exercise with acute exposure to high altitude, when the arms consumed lactate. Both active and inactive muscle beds demonstrated simultaneous lactate extraction and release. We conclude that active skeletal muscle is the predominant site of glucose disposal during exercise and at high altitude but not the sole source of blood lactate during exercise at sea level or high altitude.  相似文献   

16.
In previous work using prolonged, light cycle exercise, we were unable to demonstrate an effect of acute plasma volume (PV) expansion on glucose kinetics or substrate oxidation, despite a decline in whole-body lipolysis (Phillips et al., 1997). However, PV is known to decrease arterial O2 content. The purpose of this study was to examine whether substrate turnover and oxidation would be altered with heavier exercise where the challenge to O2 delivery is increased. Eight untrained males (VO2max = 3.52 +/- 0.12 l/min) twice performed 90 min of cycle ergometry at 62 % VO2peak, both prior to (CON) and following induced plasma volume expansion (Dextran [6 %] or Pentaspan [10 %]) (6.7 ml/kg) (PVX). Glucose and glycerol kinetics were determined with primed constant infusions of [6.6-(2)H2] glucose and [(2)H5] glycerol, respectively. PVX resulted in a 15.8 +/- 2.2 % increase (p < 0.05) in PV. Glucose and glycerol appearance (Ra) and utilization (Rd), although increasing progressively (p < 0.05) with exercise, were not different between conditions. Similarly, no differences in substrate oxidation, either fat or carbohydrate, were observed between the two conditions. Prolonged exercise resulted in an increase (p < 0.05) in plasma glucagon and a decrease (p < 0.05) in plasma insulin during both conditions. With PVX, the exercise-induced increase in glucagon was diminished (p < 0.05). We conclude that impairment in O2 content mediated by an elevated PV does not alter glucose, and glycerol kinetics or substrate oxidation even at moderate exercise intensity.  相似文献   

17.
The purpose of this study was to determine whether age-associated alterations in blood glucose levels occur during exercise. In addition, blood lactate and fitness levels (VO2max) were examined to ascertain if these factors influenced the age-related responses. Sixty-four female masters swimmers (25-75 years) were classified into either a well trained (WT) or recreational trained (RT) group and exercised on a treadmill to VO2max X VO2max data confirmed our classification of WT and RT swimmers based on activity levels. There were no differences in post-absorptive blood glucose and lactate levels across age and fitness. Significant age-related effects on blood glucose levels during exercise (p less than 0.01) but no fitness effect were revealed by ANOVA. Within the first or second exercise stage all age groups demonstrated a significant decline in blood glucose (6.3 to 14.1%). A hyperglycemic response was observed during recovery in all age groups with the exception of the over 60 (60+) group. The 60+ group exhibited lower blood glucose levels compared to all other age groups during exercise commencing with the second exercise stage. There were no significant differences in glucose levels among any of the other age groups during exercise or recovery. There were no age-related differences in maximal or recovery lactates. These data indicate that there is an alteration of blood glucose homeostasis during exercise in females over 60 years of age.  相似文献   

18.
The responses to sublingual nifedipine (20 mg) and placebo were compared in normal subjects during two studies on cycle ergometer [progressive exercise and constant work-load exercise at approximately 60% of maximal O2 consumption (VO2max)]. The use of nifedipine did not modify maximal power, ventilation (VE), VO2, and heart rate (HR) at the end of the multistage progressive exercise (30-W increments every 3 min). Over the 45 min of the constant-load exercise and the ensuing 30-min recovery we observed with nifedipine compared with placebo 1) no differences in VO2, VE, respiratory exchange ratio, and systolic arterial blood pressure; 2) a higher HR (P less than 0.001) and lower diastolic arterial blood pressure (P less than 0.01); 3) a greater and more prolonged rise in norepinephrine (P less than 0.01) and growth hormone (P less than 0.001); 4) no significant differences in epinephrine and insulin and a lesser increase in glucagon during recovery (P less than 0.01); and 5) a lesser fall in blood glucose (P less than 0.01) and greater increase in acetoacetate (P less than 0.001), beta-hydroxybutyrate (P less than 0.05), and blood lactate (P less than 0.001). Our data do not support the hypothesis that nifedipine reduces hormonal secretions in vivo and are best explained by an enhanced secretion of catecholamines compensating for the primary vasodilator effect of nifedipine.  相似文献   

19.
A seven- to eightfold increment in hepatic glucose production (endogenous R(a)) occurs in postabsorptive (PA) intense exercise (IE). A similar response is likely present in the postprandial (PP) state, when most such exercise is performed, because 1) little evidence for increased intestinal absorption of glucose during exercise exists, and 2) intravenous glucose does not prevent it. We investigated IE in 10 PA and 8 PP fit, lean, young males who had exercised for 15 min at >84% maximum O(2) uptake, starting 3 h after a 412-kcal mixed meal. The meal induced a small rise in glycemia with sustained insulin and glucagon increases. Preexercise glucose total R(a) and utilization (R(d)) were equal and approximately 130% of the PA level. Exercise hyperglycemia in PP was delayed and diminished and, in early recovery, was of shorter duration and lesser magnitude (P = 0.042). Peak catecholamine (12- to 16-fold increase) and R(a) (PP: 11.5 +/- 1.4, PA: 13.8 +/- 1.4 mg. kg(-1). min(-1)) responses did not differ, and their responses during exercise were significantly correlated. Exercise glucagon, insulin, and glucagon-to-insulin responses were small or not significant. R(d) reached the same peak (PP: 8.0 +/- 0.6, PA: 9.3 +/- 0.8 mg. kg(-1). min(-1)) but was greater at 20-120 min of recovery in PP (P = 0.001). Therefore, the total R(a) response to IE is preserved despite the possibility of prior PP suppression of endogenous R(a) and is consistent with catecholamine mediation. Post-IE hyperglycemia is reduced in the postprandial state.  相似文献   

20.
Five normal men, aged 20-30 years, participated in three types of exercise (I, II, III) of equal duration (20 min) and total external work output (120-180 kJ) separated by ten days of rest. Exercises consisted of seven sets of squats with barbells on the shoulders (I; Maximal Power Output Wmax = 600-900 W), continuous cycling at 50 rev X min-1 (II; Wmax = 100-150 W) and seven bouts of intermittent cycling at 70 rev X min-1 (III; Wmax = 300-450 W). Plasma cortisol, glucagon and lactate increased significantly (P less than 0.05) during the exercise and recovery periods of the anaerobic, intermittent exercise (I and III) but not in the continuous, aerobic exercise (II). No consistent significant changes were found in plasma glucose. Plasma insulin levels decreased only during exercise II. The highest increase in cortisol and glucagon was not associated with the highest VE, VO2, Wmax or HR; however it was associated with the anaerobic component of exercise (lactic acid). It is suggested that in exercises of equal duration and total external work output, the continuous, aerobic exercise (II) led to lowest levels of glucogenic hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号