首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Type 2 diabetes mellitus (T2DM) and several types of neurodegeneration, including Alzheimer's, are linked to insulin-resistance, and chronic high dietary fat intake causes T2DM with mild neurodegeneration. Intra-cerebral Streptozotocin, a nitrosamine-related compound, causes neurodegeneration, whereas peripheral treatment causes DM.

Hypothesis

Limited early exposures to nitrosamines that are widely present in the environment, enhance the deleterious effects of high fat intake in promoting T2DM and neurodegeneration.

Methods

Long Evans rat pups were treated with N-nitrosodiethylamine (NDEA) by i.p. injection, and upon weaning, they were fed with high fat (60%; HFD) or low fat (5%; LFD) chow for 8 weeks. Cerebella were harvested to assess gene expression, and insulin and insulin-like growth factor (IGF) deficiency and resistance in the context of neurodegeneration.

Results

HFD ± NDEA caused T2DM, neurodegeneration with impairments in brain insulin, insulin receptor, IGF-2 receptor, or insulin receptor substrate gene expression, and reduced expression of tau and choline acetyltransferase (ChAT), which are regulated by insulin and IGF-1. In addition, increased levels of 4-hydroxynonenal and nitrotyrosine were measured in cerebella of HFD ± NDEA treated rats, and overall, NDEA+HFD treatment reduced brain levels of Tau, phospho-GSK-3β (reflecting increased GSK-3β activity), glial fibrillary acidic protein, and ChAT to greater degrees than either treatment alone. Finally, pro-ceramide genes, examined because ceramides cause insulin resistance, oxidative stress, and neurodegeneration, were significantly up-regulated by HFD and/or NDEA exposure, but the highest levels were generally present in brains of HFD+NDEA treated rats.

Conclusions

Early limited exposure to nitrosamines exacerbates the adverse effects of later chronic high dietary fat intake in promoting T2DM and neurodegeneration. The mechanism involves increased generation of ceramides and probably other toxic lipids in brain.  相似文献   

2.

Background & Aims

In recent years, nonalcoholic steatohepatitis (NASH) has become a considerable healthcare burden worldwide. Pathogenesis of NASH is associated with type 2 diabetes mellitus (T2DM) and insulin resistance. However, a specific drug to treat NASH is lacking. We investigated the effect of the selective sodium glucose cotransporter 2 inhibitor (SGLT2I) ipragliflozin on NASH in mice.

Methods

We used the Amylin liver NASH model (AMLN), which is a diet-induced model of NASH that results in obesity and T2DM. AMLN mice were fed an AMLN diet for 20 weeks. SGLT2I mice were fed an AMLN diet for 12 weeks and an AMLN diet with 40 mg ipragliflozin/kg for 8 weeks.

Results

AMLN mice showed steatosis, inflammation, and fibrosis in the liver as well as obesity and insulin resistance, features that are recognized in human NASH. Ipragliflozin improved insulin resistance and liver injury. Ipragliflozin decreased serum levels of free fatty acids, hepatic lipid content, the number of apoptotic cells, and areas of fibrosis; it also increased lipid outflow from the liver.

Conclusions

Ipragliflozin improved the pathogenesis of NASH by reducing insulin resistance and lipotoxicity in NASH-model mice. Our results suggest that ipragliflozin has a therapeutic effect on NASH with T2DM.  相似文献   

3.

Background

Clinical studies suggest that short-term insulin treatment in new-onset type 2 diabetes (T2DM) can promote prolonged glycemic control. The purpose of this study was to establish an animal model to examine such a “legacy” effect of early insulin therapy (EIT) in long-term glycemic control in new-onset T2DM. The objective of the study was to investigate the role of diet following onset of diabetes in the favorable outcomes of EIT.

Methodology

As such, C57BL6/J male mice were fed a high-fat diet (HFD) for 21 weeks to induce diabetes and then received 4 weeks of daily insulin glargine or sham subcutaneous injections. Subsequently, mice were either kept on the HFD or switched to a low-fat diet (LFD) for 4 additional weeks.

Principal Findings

Mice fed a HFD gained significant fat mass and displayed increased leptin levels, increasing insulin resistance (poor HOMA-IR) and worse glucose tolerance test (GTT) performance in comparison to mice fed a LFD, as expected. Insulin-treated diabetic mice but maintained on the HFD demonstrated even greater weight gain and insulin resistance compared to sham-treated mice. However, insulin-treated mice switched to the LFD exhibited a better HOMA-IR compared to those mice left on a HFD. Further, between the insulin-treated and sham control mice, in spite of similar HOMA-IR values, the insulin-treated mice switched to a LFD following insulin therapy did demonstrate significantly better HOMA-B% values than sham control and insulin-treated HFD mice.

Conclusion/Interpretation

Early insulin treatment in HFD-induced T2DM in C57BL6/J mice was only beneficial in animals that were switched to a LFD after insulin treatment which may explain why a similar legacy effect in humans is achieved clinically in only a portion of cases studied, emphasizing a vital role for diet adherence in diabetes control.  相似文献   

4.

Background

Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM.

Methodology/Principal Findings

Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients.

Conclusion

Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile.  相似文献   

5.

Introduction

The metabolic alterations accompanying the development of insulin resistance and type 2 diabetes mellitus (T2DM) are complex, not coherently understood and only partially represented by conventional clinical tests like the oral glucose tolerance test. Changes in plasma metabolite concentrations preceding insulin resistance or overt T2DM may help understand the etiology of metabolic disorders and they are potential predictive risk markers.

Objectives

Here, we describe a non-targeted metabolomics platform based on UPLC-UHR-QToF-MS(/MS) for the assessment of plasma non-polar metabolites.

Methods

This method was applied to a longitudinal mouse obesity study comparing mice on control and high fat diet (HFD), respectively. Plasma metabolites were assessed 2, 4, 8 and 16 weeks after initiation of feeding. Multivariate analysis of the metabolite dataset showed clear differentiation of the feeding groups after 8 weeks when the HFD-fed mice exhibited clear signs of insulin resistance.

Results

The discrimination of the groups was due to changes in various metabolic pathways including, among others, glycerophospholipid, sphingolipid and cholesterol metabolism.

Conclusion

From 81 compounds with a p-value lower than 0.05, a total of 19 metabolites could be putatively identified due to their accurate mass, isotope and fragmentation pattern. Thirteen of these observed metabolites are known key metabolites to diabetes or its secondary diseases like diabetic nephropathy and neuropathy (Meiss, Werner, John, Scheja, Herbach, Heeren, Fischer 2015). The compounds putatively identified here may provide valuable starting points for further investigations and developments of clinical diagnostics and prediagnostics for T2DM and related diseases.
  相似文献   

6.

Background

Adiponectin and resistin are adipokines which modulate insulin action, energy, glucose and lipid homeostasis. Meta-analyses showed that hypoadiponectinemia and hyperresistinemia are strongly associated with increased risk of insulin resistance, type 2 diabetes (T2DM), metabolic syndrome (MS) and cardiovascular disease. The aim of this study was to propose a novel adiponectin-resistin (AR) index by taking into account both adiponectin and resistin levels to povide a better indicator of the metabolic homeostasis and metabolic disorders. In addition, a novel insulin resistance (IRAR) index was proposed by integration of the AR index into an existing insulin resistance index to provide an improved diagnostic biomarker of insulin sensitivity.

Methods

In this case control study, anthropometric clinical and metabolic parameters including fasting serum total adiponectin and resistin levels were determined in 809 Malaysian men (208 controls, 174 MS without T2DM, 171 T2DM without MS, 256 T2DM with MS) whose ages ranged between 40-70 years old. Significant differences in continuous variables among subject groups were confirmed by ANCOVA or MANCOVA test using 1,000 stratified bootstrap samples with bias corrected and accelerated (BCa) 95% CI. Spearman's rho rank correlation test was used to test the correlation between two variables.

Results

The AR index was formulated as 1+log10(R0)-log10(A0). The AR index was more strongly associated with increased risk of T2DM and MS than hypoadiponectinemia and hyperresistinemia alone. The AR index was more strongly correlated with the insulin resistance indexes and key metabolic endpoints of T2DM and MS than adiponectin and resistin levels alone. The AR index was also correlated with a higher number of MS components than adiponectin and resistin levels alone. The IRAR index was formulated as log10(I0G0)+log10(I0G0)log10(R0/A0). The normal reference range of the IRAR index for insulin sensitive individuals was between 3.265 and 3.538. The minimum cut-off values of the IRAR index for insulin resistance assessment were between 3.538 and 3.955.

Conclusions

The novel AR and IRAR indexes are cost-effective, precise, reproducible and reliable integrated diagnostic biomarkers of insulin sensitivity for screening subjects with increased risk of future development of T2DM and MS.  相似文献   

7.

Background

Impaired insulin signalling is increasingly thought to contribute to Alzheimer''s disease (AD). The ε4 isoform of the APOE gene is the greatest genetic risk factor for sporadic, late onset AD, and is also associated with risk for type 2 diabetes mellitus (T2DM). Neuropathological studies reported the highest number of AD lesions in brain tissue of ε4 diabetic patients. However other studies assessing AD pathology amongst the diabetic population have produced conflicting reports and have failed to show an increase in AD-related pathology in diabetic brain. The thiazolidinediones (TZDs), peroxisome proliferator-activated receptor gamma agonists, are peripheral insulin sensitisers used to treat T2DM. The TZD, pioglitazone, improved memory and cognitive functions in mild to moderate AD patients. Since it is not yet clear how apoE isoforms influence the development of T2DM and its progression to AD, we investigated amyloid beta and tau pathology in APOE knockout mice, carrying human APOEε3 or ε4 transgenes after diet-induced insulin resistance with and without pioglitazone treatment.

Methods

Male APOE knockout, APOEε3-transgenic and APOEε4-transgenic mice, together with background strain C57BL6 mice were kept on a high fat diet (HFD) or low fat diet (LFD) for 32 weeks, or were all fed HFD for 32 weeks and during the final 3 weeks animals were treated with pioglitazone or vehicle.

Results

All HFD animals developed hyperglycaemia with elevated plasma insulin. Tau phosphorylation was reduced at 3 epitopes (Ser396, Ser202/Thr205 and Thr231) in all HFD, compared to LFD, animals independent of APOE genotype. The introduction of pioglitazone to HFD animals led to a significant reduction in tau phosphorylation at the Ser202/Thr205 epitope in APOEε3 animals only. We found no changes in APP processing however the levels of soluble amyloid beta 40 was reduced in APOE knockout animals treated with pioglitazone.  相似文献   

8.

Background

Chronic stress is a major contributor in the development of metabolic syndrome and associated diseases, such as diabetes. High-fat diet (HFD) and sex are known modifiers of metabolic parameters. Peptide hormones corticotropin-releasing factor (CRF) and urocortins (UCN) mediate stress responses via activation and feedback to the hypothalamic-pituitary-adrenal (HPA) axis. UCN3 is a marker of pancreatic β-cell differentiation, and UCN2 is known to ameliorate glucose levels in mice rendered diabetic with HFD. CRF receptor 2 (CRF2) is the only known cognate receptor for UCN2/3. Here, we ascertained the role of CRF2 in glucose clearance, insulin sensitivity, and other parameters associated with metabolic syndrome in a mouse model of nutritional stress.

Methods

Wild-type (WT) and Crhr2?/? (null) mice of both sexes were fed either normal chow diet or HFD. After 8 weeks, blood glucose levels in response to glucose and insulin challenge were determined. Change in body and fat mass, plasma insulin, and lipid profile were assessed. Histological evaluation of liver sections was performed.

Results

Here, we show that genotype (Crhr2), sex, and diet were all independent variables in the regulation of blood glucose levels, body and fat mass gain/redistribution, and insulin resistance. Surprisingly, CRF2-deficient mice (Crhr2?/?) male mice showed similarly impaired glucose clearance on HFD and chow. HFD-fed female Crhr2?/? mice redistributed their fat depots that were distinct from wild-type females and male mice on either diet. Blood cholesterol and low-density lipoprotein (LDL) levels were elevated significantly in male Crhr2?/? mice; female Crhr2?/? mice were protected. Male, but not female Crhr2?/? mice developed peripheral insulin resistance. HFD, but not chow-fed wild-type male mice developed hepatic macrovesicular steatosis. In contrast, livers of Crhr2?/? male mice showed microvesicular steatosis on either diet, whereas livers of female mice on this 8-week HFD regimen did not develop steatosis.

Conclusions

CRF2 receptor dysregulation is a sexually dimorphic risk factor in development of pre-diabetic and metabolic symptoms.
  相似文献   

9.

Background

Latinos in the United States have a higher prevalence of type 2 diabetes than non-Latino whites, even after controlling for adiposity. Decreased adiponectin is associated with insulin resistance and predicts T2DM, and therefore may mediate this ethnic difference. We compared total and high-molecular-weight (HMW) adiponectin in Latino versus white individuals, identified factors associated with adiponectin in each ethnic group, and measured the contribution of adiponectin to ethnic differences in insulin resistance.

Methods

We utilized cross-sectional data from subjects in the Latinos Using Cardio Health Actions to reduce Risk study. Participants were Latino (n = 119) and non-Latino white (n = 60) men and women with hypertension and at least one other risk factor for CVD (age 61 ± 10 yrs, 49% with T2DM), seen at an integrated community health and hospital system in Denver, Colorado. Total and HMW adiponectin was measured by RIA and ELISA respectively. Fasting glucose and insulin were used to calculate the homeostasis model insulin resistance index (HOMA-IR). Variables independently associated with adiponectin levels were identified by linear regression analyses. Adiponectin's contribution to ethnic differences in insulin resistance was assessed in multivariate linear regression models of Latino ethnicity, with logHOMA-IR as a dependent variable, adjusting for possible confounders including age, gender, adiposity, and renal function.

Results

Mean adiponectin levels were lower in Latino than white patients (beta estimates: -4.5 (-6.4, -2.5), p < 0.001 and -1.6 (-2.7, -0.5), p < 0.005 for total and HMW adiponectin), independent of age, gender, BMI/waist circumference, thiazolidinedione use, diabetes status, and renal function. An expected negative association between adiponectin and waist circumference was seen among women and non-Latino white men, but no relationship between these two variables was observed among Latino men. Ethnic differences in logHOMA-IR were no longer observed after controlling for adiponectin levels.

Conclusions

Among patients with CVD risk, total and HMW adiponectin is lower in Latinos, independent of adiposity and other known regulators of adiponectin. Ethnic differences in adiponectin regulation may exist and future research in this area is warranted. Adiponectin levels accounted for the observed variability in insulin resistance, suggesting a contribution of decreased adiponectin to insulin resistance in Latino populations.  相似文献   

10.

Introduction

Metabolic syndrome causes insulin resistance and is associated with risk factor clustering, thereby increasing the risk of atherosclerosis. Recently, endothelial nitric oxide synthase deficient (eNOS-/-) mice have been reported to show metabolic disorders. Interestingly, eNOS has also been reported to be expressed in non-endothelial cells including adipocytes, but the functions of eNOS in adipocytes remain unclear.

Methods and Results

The eNOS expression was induced with adipocyte differentiation and inhibition of eNOS/NO enhanced lipolysis in vitro and in vivo. Furthermore, the administration of a high fat diet (HFD) was able to induce non-alcoholic steatohepatitis (NASH) in eNOS-/- mice but not in wild type mice. A PPARγ antagonist increased eNOS expression in adipocytes and suppressed HFD-induced fatty liver changes.

Conclusions

eNOS-/- mice induce NASH development, and these findings provide new insights into the therapeutic approach for fatty liver disease and related disorders.  相似文献   

11.
12.

Background

Immigrant women from the Middle East have elevated risk of cardiovascular disease. Sagittal abdominal diameter (SAD), a simple marker of intra-abdominal fat, predicts insulin resistance and cardiovascular mortality in men. Its usefulness in immigrant women is however unknown. To investigate the predictive role of SAD compared to other anthropometric measures, we examined a random sample of native-Swedes and immigrant women from the Middle East living in Sweden.

Methods

157 women participated in the study; 107 immigrants and 50 natives. Anthropometric measurements (SAD, body mass index [BMI], waist circumference [WC] and waist-to-hip ratio [WHR]; all measured in supine position) and cardiovascular risk factors (C-reactive protein [CRP], insulin, glucose, insulin resistance [HOMA-IR], blood pressure and serum lipids) were assessed. The anthropometric measures were compared in their relation to cardiovascular risk factors using linear regression analyses.

Results

Overall, SAD showed a slightly higher correlation with most cardiovascular risk factors, especially insulin resistance, insulin, CRP, apolipoprotein B and triglycerides (all P-values < 0.01) than other anthropometric measures. BMI was however a better predictor of HDL cholesterol. SAD explained a greater proportion of the variation of insulin resistance and CRP levels, even independently of the other anthropometric measures.

Conclusion

SAD identifies insulin resistance, subclinical inflammation or raised serum lipids in a Swedish population with a large proportion of immigrant women from the Middle East. If these results could be confirmed in a larger population, SAD could be a more clinically useful risk marker than other anthropometric measures in women at high risk of cardiovascular disease.  相似文献   

13.
Shao W  Yu Z  Chiang Y  Yang Y  Chai T  Foltz W  Lu H  Fantus IG  Jin T 《PloS one》2012,7(1):e28784

Background

Mechanisms underlying the attenuation of body weight gain and insulin resistance in response to high fat diet (HFD) by the curry compound curcumin need to be further explored. Although the attenuation of the inflammatory pathway is an accepted mechanism, a recent study suggested that curcumin stimulates Wnt signaling pathway and hence suppresses adipogenic differentiation. This is in contrast with the known repressive effect of curcumin on Wnt signaling in other cell lineages.

Methodology and Principal Findings

We conducted the examination on low fat diet, or HFD fed C57BL/6J mice with or without curcumin intervention for 28 weeks. Curcumin significantly attenuated the effect of HFD on glucose disposal, body weight/fat gain, as well as the development of insulin resistance. No stimulatory effect on Wnt activation was observed in the mature fat tissue. In addition, curcumin did not stimulate Wnt signaling in vitro in primary rat adipocytes. Furthermore, curcumin inhibited lipogenic gene expression in the liver and blocked the effects of HFD on macrophage infiltration and the inflammatory pathway in the adipose tissue.

Conclusions and Significance

We conclude that the beneficial effect of curcumin during HFD consumption is mediated by attenuating lipogenic gene expression in the liver and the inflammatory response in the adipose tissue, in the absence of stimulation of Wnt signaling in mature adipocytes.  相似文献   

14.
15.

Background

Recent studies have demonstrated that immune factors might have a role in the pathophysiology of insulin resistance and type 2 diabetes mellitus (T2DM). Inappropriate glycemic control in patients with T2DM is an important risk factor for the occurrence of diabetes complications. The prevalence of celiac disease (CD) is high in type 1 diabetes mellitus however, there are scarce data about its prevalence in T2DM. Our aim was to investigate the prevalence of celiac disease among insulin-using type 2 diabetes patients with inappropriate glycemic control.

Methods

IgA tissue transglutaminase antibodies (tTGA IgA) test was performed as a screening test. A total of 135 patients with T2DM whose control of glycemia is inappropriate (HbAlc value >7%) in spite of using insulin treatment for at least 3-months (only insulin or insulin with oral antidiabetic drugs) and 115 healthy controls were enrolled in the study. Upper gastrointestinal endoscopy with duodenal biopsy was performed to all patients with raised tTGA IgA or selective lgA deficiency.

Results

Gender, age, body mass index (BMI) and tTGA IgA, kreatinin, calcium, LDL-cholesterol (LDL-C), total cholesterol, 25-OH vitamin D3 levels were similar between groups. Systolic and diastolic blood pressure, waist circumference, fasting plasma glucose, postprandial plasma glucose, urea, sodium, HbA1c, LDL-C, triglyceride, vitamin B12 levels were significantly higher in DM group (p < 0.0001). BMI, high-sensitive CRP, microalbuminuria, and AST, ALT, potassium, phosphorus levels were significantly higher in the T2DM group (p < 0.05). HDL-cholesterol and parathormone levels were significantly lower in the T2DM group (p < 0.05). Two of the 135 patients with T2DM were diagnosed with CD (1.45%).

Conclusions

The prevalence of celiac disease among patients with type 2 diabetes, with poor glycemic control despite insulin therapy, is slightly higher than the actual CD prevalence in general population. Type 2 diabetic patients with inappropriate control of glycemia in spite of insulin treatment might be additionally tested for Celiac disease especially if they have low C-peptide levels.
  相似文献   

16.

Background

Adipose tissue, an endocrine organ of the body, is involved in some obesity-related disease states such as insulin resistance, diabetes mellitus, and atherosclerosis. Vaspin is a novel adipocyte with insulin sensitizing effects. In this study, we planned to estimate serum vaspin concentrations as related to glycemic status and the presence of macrovascular complications among elderly patients with type-2 diabetes mellitus (T2DM).

Methods

A total of 230 elderly patients with T2DM were evaluated. These patients were divided into two groups: patients without complications (T2DM group, n?=?110), and patients with macrovascular complications (T2DM + MC group, n?=?120). In addition, 60 healthy elderly subjects were enrolled and assigned into the control group (NC group). Relevant parameters were matched for age and gender ratio. Serum vaspin concentrations were measured by Enzyme-linked immunosorbent assay (ELISA). Anthropometric measurements, plasma glucose and HbA1C levels, insulin concentration, liver and kidney functions, and lipid profile were measured for each participant.

Results

Serum vaspin concentrations were significantly higher in the T2DM group than in the T2DM + MC group (F?=?13.122, P?<?0.01). These concentrations were also significantly higher among females, compared to males (T?=?3.567, P?<?0.05). Logistic regression analysis revealed that serum vaspin concentration, systolic blood pressure, HDL-C and T2DM duration were independent influencing factors for diabetic macrovascular complications.

Conclusion

Serum vaspin may be considered as a potential marker to assess the status of elderly patients with T2DM and the risk of developing serious macrovascular complications. Further prospective studies are warranted.

Trial registration

ChiCTR-OPC-14005698, retrospectively registered on 20 Dec. 2014.
  相似文献   

17.

Background

Although there is a growing body of evidence showing that patients with type 2 diabetes mellitus (T2DM) have poor glycemic control in general, it is not clear whether T2DM patients with pre-existing cardiovascular diseases (CVD) are more or less likely to have good glycemic control than patients without pre-existing CVD. Our aim was to examine the degree of glycemic control among T2DM patients in Europe with and without pre-existing CVD.

Methods

This is a matched cohort study based on a multi-center, observational study with retrospective medical chart reviews of T2DM patients in Spain, France, United Kingdom, Norway, Finland, Germany, and Poland. Included patients were aged >= 30 years at time of diagnosis of T2DM, had added a SU or a PPARγ agonist to failing metformin monotherapy (index date) and had pre-existing CVD (cases). A control cohort with T2DM without pre-existing CVD was identified using 1:1 propensity score matching. With difference-in-difference approach, logistic and linear regression analyses were applied to identify differences in glycemic control by CVD during the follow up period, after controlling for baseline demographics, clinical information, and concurrent anti-hyperglycemic medication use.

Results

The percentage of case patients with adequate glycemic control relative to control patients during the 1st, 2nd, 3rd, and 4th years after the index date was 19.9 vs. 26.5, 16.8 vs. 26.5, 18.8 vs. 28.3, and 16.8 vs. 23.5 respectively. Cases were significantly less likely to have adequate glycemic control (odds ratio: 0.62; 95% confidence interval: 0.46-0.82) than controls after adjusting for baseline differences, secular trend, and other potential confounding covariates.

Conclusions

T2DM patients with pre-existing CVD tended to have poorer glycemic control than those without pre-existing CVD, all other factors being equal. It suggests that clinicians may need to pay more attention to glycemic control among T2DM patients with CVD.  相似文献   

18.

Background

The immune mechanisms underlying experimental non-alcoholic steatohepatitis (NASH), and more interestingly, the effect of T. cruzi chronic infection on the pathogenesis of this metabolic disorder are not completely understood.

Methodology/Principal Findings

We evaluated immunological parameters in male C57BL/6 wild type and TLR4 deficient mice fed with a standard, low fat diet, LFD (3% fat) as control group, or a medium fat diet, MFD (14% fat) in order to induce NASH, or mice infected intraperitoneally with 100 blood-derived trypomastigotes of Tulahuen strain and also fed with LFD (I+LFD) or MFD (I+MFD) for 24 weeks. We demonstrated that MFD by itself was able to induce NASH in WT mice and that parasitic infection induced marked metabolic changes with reduction of body weight and steatosis revealed by histological studies. The I+MFD group also improved insulin resistance, demonstrated by homeostasis model assessment of insulin resistance (HOMA-IR) analysis; although parasitic infection increased the triglycerides and cholesterol plasma levels. In addition, hepatic M1 inflammatory macrophages and cytotoxic T cells showed intracellular inflammatory cytokines which were associated with high levels of IL6, IFNγ and IL17 plasmatic cytokines and CCL2 chemokine. These findings correlated with an increase in hepatic parasite load in I+MFD group demonstrated by qPCR assays. The recruitment of hepatic B lymphocytes, NK and dendritic cells was enhanced by MFD, and it was intensified by parasitic infection. These results were TLR4 signaling dependent. Flow cytometry and confocal microscopy analysis demonstrated that the reactive oxygen species and peroxinitrites produced by liver inflammatory leukocytes of MFD group were also exacerbated by parasitic infection in our NASH model.

Conclusions

We highlight that a medium fat diet by itself is able to induce steatohepatitis. Our results also suggest a synergic effect between damage associated with molecular patterns generated during NASH and parasitic infection, revealing an intense cross-talk between metabolically active tissues, such as the liver, and the immune system. Thus, T. cruzi infection must be considered as an additional risk factor since exacerbates the inflammation and accelerates the development of hepatic injury.  相似文献   

19.

Background/objective

This study was designed to evaluate the potential chemopreventive activities of Ginkgo biloba extract (EGb) and Silybum marianum extract (silymarin) against hepatocarcinogenesis induced by N-nitrosodiethylamine (NDEA) in rats.

Methods

Rats were divided into 6 groups. Group 1 served as normal control rats. Group 2 animals were intragastrically administrated NDEA at a dose of 10 mg/kg five times a week for 12 weeks to induce hepatocellular carcinoma (HCC). Groups 3 and 4 animals were pretreated with silymarin and EGb respectively. Groups 5 and 6 animals were posttreated with silymarin and EGb respectively. The investigated parameters in serum are alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyltransferase (GGT) and vascular endothelial growth factor (VEGF). The investigated parameters in liver tissue are malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and comet assay parameters.

Results

In NDEA group, MDA level was elevated with subsequent decrease in GSH level and SOD, GPx and GR activities. In addition, NDEA group revealed a significant increase in serum ALT, AST and GGT activities and VEGF level. Furthermore, NDEA administrated animals showed a marked increase in comet assay parameters. These biochemical alterations induced by NDEA were confirmed by the histopathological examination of rat livers intoxicated with NDEA that showed an obvious cellular damage and well differentiated HCC. In contrast, silymarin+NDEA treated groups (3&;5) and EGb+NDEA treated groups (4&;6) showed a significant decrease in MDA level and a significant increase in GSH content and SOD, GPx and GR activities compared to NDEA group. Silymarin and EGb also beneficially down-regulated the increase in serum ALT, AST, GGT activities and VEGF level induced by NDEA. In addition, silymarin and EGb significantly decreased comet assay parameters. Histopathological examination of rat livers treated with either silymarin or EGb exhibited an improvement in the liver architecture compared to NDEA group.

Conclusions

The obtained findings suggested that silymarin and EGb may have beneficial chemopreventive roles against hepatocarcinogenesis through their antioxidant, antiangiogenic and antigenotoxic activities.  相似文献   

20.

Background

Diabetes induces many complications including reduced fertility and low oocyte quality, but whether it causes increased mtDNA mutations is unknown.

Methods

We generated a T2D mouse model by using high-fat-diet (HFD) and Streptozotocin (STZ) injection. We examined mtDNA mutations in oocytes of diabetic mice by high-throughput sequencing techniques.

Results

T2D mice showed glucose intolerance, insulin resistance, low fecundity compared to the control group. T2D oocytes showed increased mtDNA mutation sites and mutation numbers compared to the control counterparts. mtDNA mutation examination in F1 mice showed that the mitochondrial bottleneck could eliminate mtDNA mutations.

Conclusions

T2D mice have increased mtDNA mutation sites and mtDNA mutation numbers in oocytes compared to the counterparts, while these adverse effects can be eliminated by the bottleneck effect in their offspring. This is the first study using a small number of oocytes to examine mtDNA mutations in diabetic mothers and offspring.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号