首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Background

BCG vaccination is administered in infancy in most countries with the aim of providing protection against tuberculosis. There is increasing interest in the role of vitamin D in immunity to tuberculosis. This study objective was to determine if there was an association between circulating 25(OH)D concentrations and BCG vaccination status and cytokine responses following BCG vaccination in infants.

Methods

Blood samples were collected from UK infants who were vaccinated with BCG at 3 (n = 47) and 12 (n = 37) months post BCG vaccination. These two time-points are denoted as time-point 1 and time-point 2. Two blood samples were also collected from age-matched unvaccinated infants (n = 32 and 28 respectively), as a control group. Plasma vitamin D concentrations (25(OH)D) were measured by radio-immunoassay. The cytokine IFNγ was measured in supernatants from diluted whole blood stimulated with M.tuberculosis (M.tb) PPD for 6 days.

Results

58% of infants had some level of hypovitaminosis (25(OH)D <30ng/ml) at time-point 1, and this increased to 97% 9 months later. BCG vaccinated infants were almost 6 times (CI: 1.8–18.6) more likely to have sufficient vitamin D concentrations than unvaccinated infants at time-point 1, and the association remained strong after controlling for season of blood collection, ethnic group and sex. Among vaccinees, there was also a strong inverse association between IFNγ response to M.tb PPD and vitamin D concentration, with infants with higher vitamin D concentrations having lower IFNγ responses.

Conclusions

Vitamin D may play an immuno-regulatory role following BCG vaccination. The increased vitamin D concentrations in BCG vaccinated infants could have important implications: vitamin D may play a role in immunity induced by BCG vaccination and may contribute to non-specific effects observed following BCG vaccination.  相似文献   

2.

Background

The tuberculosis (TB) still increases in the number of new cases, which is estimated to approach 10 million in 2010. The number of aged people has been growing all over the world. Ageing is one of risk factors in tuberculosis because of decreased immune responses in aged people. Mycobacterium bovis Bacillus Calmette Guérin (BCG) is a sole vaccine currently used for TB, however, the efficacy of BCG in adults is still a matter of debate. Emerging the multidrug resistant Mycobacterium tuberculosis (MDR-TB) make us to see the importance of vaccination against TB in new light. In this study, we evaluated the efficacy of BCG vaccination in aged mice.

Results

The Th1 responses, interferon-γ production and interleukin 2, in BCG inoculated aged mice (24-month-old) were comparable to those of young mice (4- to 6-week-old). The protection activity of BCG in aged mice against Mycobacterium tuberculosis H37Rv was also the same as young mice.

Conclusion

These findings suggest that vaccination in aged generation is still effective for protection against tuberculosis.  相似文献   

3.

Background

There is a need for new vaccines for tuberculosis (TB) that protect against adult pulmonary disease in regions where BCG is not effective. However, BCG could remain integral to TB control programmes because neonatal BCG protects against disseminated forms of childhood TB and many new vaccines rely on BCG to prime immunity or are recombinant strains of BCG. Interferon-gamma (IFN-γ) is required for immunity to mycobacteria and used as a marker of immunity when new vaccines are tested. Although BCG is widely given to neonates IFN-γ responses to BCG in this age group are poorly described. Characterisation of IFN-γ responses to BCG is required for interpretation of vaccine immunogenicity study data where BCG is part of the vaccination strategy.

Methodology/Principal Findings

236 healthy Gambian babies were vaccinated with M. bovis BCG at birth. IFN-γ, interleukin (IL)-5 and IL-13 responses to purified protein derivative (PPD), killed Mycobacterium tuberculosis (KMTB), M. tuberculosis short term culture filtrate (STCF) and M. bovis BCG antigen 85 complex (Ag85) were measured in a whole blood assay two months after vaccination. Cytokine responses varied up to 10 log-fold within this population. The majority of infants (89–98% depending on the antigen) made IFN-γ responses and there was significant correlation between IFN-γ responses to the different mycobacterial antigens (Spearman''s coefficient ranged from 0.340 to 0.675, p = 10−6–10−22). IL-13 and IL-5 responses were generally low and there were more non-responders (33–75%) for these cytokines. Nonetheless, significant correlations were observed for IL-13 and IL-5 responses to different mycobacterial antigens

Conclusions/Significance

Cytokine responses to mycobacterial antigens in BCG-vaccinated infants are heterogeneous and there is significant inter-individual variation. Further studies in large populations of infants are required to identify the factors that determine variation in IFN-γ responses.  相似文献   

4.

Background

Mycobacterium bovis bacillus Calmette Guérin (BCG) vaccine, which has been inoculated to more than one billion people world-wide, has significant effect in preventing tuberculous meningitis and miliary tuberculosis (TB) in neonate and early childhood. However, BCG fails to adequately protect against pulmonary TB and reactivation of latent infections in adults. To overcome this problem, adequate booster is urgently desired in adult who received prior BCG vaccination, and appropriate animal models that substitute human cases would be highly valuable for further experimentation.

Findings

The booster effect of the synthesized CpG oligomer (Oligo-B) on aged mice which had been primarily vaccinated with BCG at the age of 4-week old. The specific Th1 type reaction, production of interferon-γ, in response to TB antigens, purified protein derivatives (PPD) and protection against challenge with Mycobacterium tuberculosis (MTB) H37Rv decreased with increasing age and were not observed in 89-week old mice. In order to rejuvenate the Th1 type response against PPD and protection activity against MTB infection, Oligo-B, which is known to augment Th1 responses, was administered as a booster to 81-90-week old mice (late 50’s in human equivalent) vaccinated with BCG at 4-week old. The boosting with Oligo-B increased the number of CD4+ CD44high CD62Lhigh, central memory type T cell. Furthermore, the Oligo-B boosting rejuvenated the ability of mice to protect against infection with MTB H37Rv.

Conclusions

Th1-adjuvant CpG oligo DNA, such as Oligo-B, may be a promising booster when coupled with BCG priming.
  相似文献   

5.

Background

In spite of a consistent protection against tuberculosis (TB) in children, Mycobacterium bovis Bacille Calmette-Guerin (BCG) fails to provide adequate protection against the disease in adults as well as against reactivation of latent infections or exogenous reinfections. It has been speculated that failure to generate adequate memory T cell response, elicitation of inadequate immune response against latency-associated antigens and inability to impart long-term immunity against M. tuberculosis infections are some of the key factors responsible for the limited efficiency of BCG in controlling TB.

Methods/Principal Findings

In this study, we evaluated the ability of a DNA vaccine expressing α-crystallin- a key latency antigen of M. tuberculosis to boost the BCG induced immunity. ‘BCG prime – DNA boost’ regimen (B/D) confers robust protection in guinea pigs along with a reduced pathology in comparison to BCG vaccination (1.37 log10 and 1.96 log10 fewer bacilli in lungs and spleen, respectively; p<0.01). In addition, B/D regimen also confers enhanced protection in mice. Further, we show that B/D immunization in mice results in a heightened frequency of PPD and antigen specific multi-functional CD4 T cells (3+) simultaneously producing interferon (IFN)γ, tumor necrosis factor (TNF)α and interleukin (IL)2.

Conclusions/Significance

These results clearly indicate the superiority of α-crystallin based B/D regimen over BCG. Our study, also demonstrates that protection against TB is predictable by an increased frequency of 3+ Th1 cells with superior effector functions. We anticipate that this study would significantly contribute towards the development of superior booster vaccines for BCG vaccinated individuals. In addition, this regimen can also be expected to reduce the risk of developing active TB due to reactivation of latent infection.  相似文献   

6.

Objectives

To investigate the safety and immunogenicity of a booster BCG vaccination delivered intradermally in healthy, BCG vaccinated subjects and to compare with a previous clinical trial where BCG vaccinated subjects were boosted with a new TB vaccine, MVA85A.

Design

Phase I open label observational trial, in the UK. Healthy, HIV-negative, BCG vaccinated adults were recruited and vaccinated with BCG. The primary outcome was safety; the secondary outcome was cellular immune responses to antigen 85, overlapping peptides of antigen 85A and tuberculin purified protein derivative (PPD) detected by ex vivo interferon-gamma (IFN-γ) ELISpot assay and flow cytometry.

Results and Conclusions

BCG revaccination (BCG-BCG) was well tolerated, and boosting of pre-existing PPD-specific T cell responses was observed. However, when these results were compared with data from a previous clinical trial, where BCG was boosted with MVA85A (BCG-MVA85A), MVA85A induced significantly higher levels (>2-fold) of antigen 85-specific CD4+ T cells (both antigen and peptide pool responses) than boosting with BCG, up to 52 weeks post-vaccination (p = 0.009). To identify antigen 85A-specific CD8+ T cells that were not detectable by ex vivo ELISpot and flow cytometry, dendritic cells (DC) were used to amplify CD8+ T cells from PBMC samples. We observed low, but detectable levels of antigen 85A-specific CD8+ T cells producing IFNγ (1.5% of total CD8 population) in the BCG primed subjects after BCG boosting in 1 (20%) of 5 subjects. In contrast, in BCG-MVA85A vaccinated subjects, high levels of antigen 85A-specific CD8+ T cells (up to 14% total CD8 population) were observed after boosting with MVA85A, in 4 (50%) of 8 subjects evaluated.In conclusion, revaccination with BCG resulted in modest boosting of pre-existing immune responses to PPD and antigen 85, but vaccination with BCG-MVA85A induced a significantly higher response to antigen 85 and generated a higher frequency of antigen 85A-specific CD8+ T cells.

Trial Registration

ClinicalTrials.gov NCT00654316 NCT00427830  相似文献   

7.

Background

In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB). Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production.

Methodology/Principal Findings

To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli.

Conclusions/Significance

We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG''s ability to protect against pulmonary TB.  相似文献   

8.

Background

M. tuberculosis and helminth infection each affects one third of the world population. Helminth infections down regulate cell mediated immune responses and this may contribute to lower efficacy of BCG vaccination and higher prevalence of tuberculosis.

Objective

To determine the effect of maternal helminth infection on maternal and neonatal immune function and immunity to TB.

Methods

In this cross sectional study, eighty five pregnant women were screened for parasitic and latent TB infections using Kato-Katz and QFT-GIT tests, respectively. IFN-γ and IL-4 ELISpot on Cord blood Mononuclear Cells, and total IgE and TB specific IgG ELISA on cord blood plasma was performed to investigate the possible effect of maternal helminth and/or latent TB co-infection on maternal and neonatal immune function and immunity to TB.

Result

The prevalence of helminth infections in pregnant women was 27% (n = 23), with Schistosoma mansoni the most common helminth species observed (20% of women were infected). Among the total of 85 study participants 25.8% were QFT-GIT positive and 17% had an indeterminate result. The mean total IgE value of cord blood was significantly higher in helminth positive than negative women (0.76 vs 0.47, p = 0.042). Cross placental transfer of TB specific IgG was significantly higher in helminth positive (21.9±7.9) than negative (12.3±5.1), p = 0.002) Latent TB Infection positive participants. The IFN-γ response of CBMCs to ESAT-6/CFP-10 cocktail (50 vs 116, p = 0.018) and PPD (58 vs 123, p = 0.02) was significantly lower in helminth positive than negative participants. There was no significant difference in IL-4 response of CBMCs between helminth negative and positive participants.

Conclusions

Maternal helminth infection had a significant association with the IFN-γ response of CBMCs, total IgE and cross placental transfer of TB specific IgG. Therefore, further studies should be conducted to determine the effect of these factors on neonatal immune response to BCG vaccination.  相似文献   

9.

Background

Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis (Mtb). This disease with two million deaths per year has the highest mortality rate among bacterial infections. The only available vaccine against TB is BCG vaccine. BCG is an effective vaccine against TB in childhood, however, due to some limitations, has not proper efficiency in adults. Also, BCG cannot produce an adequately protective response against reactivation of latent infections.

Objective

In the present study we will review the most recent findings about contribution of HspX protein in the vaccines against tuberculosis.

Methods

Therefore, many attempts have been made to improve BCG or to find its replacement. Most of the subunit vaccines for TB in various phases of clinical trials were constructed as prophylactic vaccines using Mtb proteins expressed in the replicating stage. These vaccines might prevent active TB but not reactivation of latent tuberculosis infection (LTBI). A literature search was performed on various online databases (PubMed, Scopus, and Google Scholar) regarding the roles of HspX protein in tuberculosis vaccines.

Results

Ideal subunit post-exposure vaccines should target all forms of TB infection, including active symptomatic and dormant (latent) asymptomatic forms. Among these subunit vaccines, HspX is the most important latent phase antigen of M. tuberculosis with a strong immunological response. There are many studies that have evaluated the immunogenicity of this protein to improve TB vaccine.

Conclusion

According to the studies, HspX protein is a good candidate for development of subunit vaccines against TB infection.
  相似文献   

10.

Background

Vaccination of neonates is generally difficult due to the immaturity of the immune system and consequent higher susceptibility to tolerance induction. Genetic immunization has been described as an alternative to trigger a stronger immune response in neonates, including significant Th1 polarization. In this investigation we analysed the potential use of a genetic vaccine containing the heat shock protein (hsp65) from Mycobacterium leprae (pVAXhsp65) against tuberculosis (TB) in neonate mice. Aspects as antigen production, genomic integration and immunogenicity were evaluated.

Methods

Hsp65 message and genomic integration were evaluated by RT-PCR and Southern blot, respectively. Immunogenicity of pVAXhsp65 alone or combined with BCG was analysed by specific induction of antibodies and cytokines, both quantified by ELISA.

Results

This DNA vaccine was transcribed by muscular cells of neonate mice without integration into the cellular genome. Even though this vaccine was not strongly immunogenic when entirely administered (three doses) during early animal's life, it was not tolerogenic. In addition, pVAXhsp65 and BCG were equally able to prime newborn mice for a strong and mixed immune response (Th1 + Th2) to pVAXhsp65 boosters administered later, at the adult life.

Conclusion

These results suggest that pVAXhsp65 can be safely used as a priming stimulus in neonate animals in prime-boost similar strategies to control TB. However, priming with BCG or pVAXhsp65, directed the ensuing immune response triggered by an heterologous or homologous booster, to a mixed Th1/Th2 pattern of response. Measures as introduction of IL-12 or GM-CSF genes in the vaccine construct or even IL-4 neutralization, are probably required to increase the priming towards Th1 polarization to ensure control of tuberculosis infection.  相似文献   

11.

Background and aims

Dendritic cell (DC)-based vaccination can induce antitumor T cell responses in vivo. This clinical pilot study examined feasibility and outcome of DC-based tumor vaccination for patients with advanced pancreatic adenocarcinoma.

Methods

Tumor lysate of patients with pancreatic carcinoma was generated by repeated freeze?Cthaw cycles of surgically obtained tissue specimens. Patients were eligible for DC vaccination after recurrence of pancreatic carcinoma or in a primarily palliative situation. DC were generated from peripheral blood mononuclear cells (PBMC), loaded with autologous tumor lysate, stimulated with TNF-?? and PGE2 and injected intradermally. All patients received concomitant chemotherapy with gemcitabine. Disease response was the primary endpoint. Individual immunological responses to DC vaccination were analyzed by T cell-based immunoassays using pre- and post-vaccination samples of non-adherent PBMC.

Results

Twelve patients received DC vaccination and concomitant chemotherapy. One patient developed a partial remission, and two patients remained in stable disease. Median survival was 10.5?months. No severe side effects were observed. Tumor-reactive T cells could be detected prior to vaccination. DC vaccination increased the frequency of tumor-reactive cells in all patients tested; however, the degree of this increase varied. To quantify the presence of tumor-reactive T cells, stimulatory indices (SI) were calculated as the ratio of proliferation-inducing capacity of lysate-loaded versus -unloaded DC. The patient with longest overall survival of 56?months had a high SI of 6.49, indicating that the presence of a pre-vaccination antitumor T cell response might be associated with prolonged survival. Five patients survived 1?year or more.

Conclusion

DC-based vaccination can stimulate an antitumoral T cell response in patients with advanced or recurrent pancreatic carcinoma receiving concomitant gemcitabine treatment.  相似文献   

12.

Background

BCG vaccination, combined with adenoviral-delivered boosts, represents a reasonable strategy to augment, broaden and prolong immune protection against tuberculosis (TB). We tested BCG (SSI1331) (in 6 animals, delivered intradermally) and a recombinant (rBCG) AFRO-1 expressing perfringolysin (in 6 animals) followed by two boosts (delivered intramuscullary) with non-replicating adenovirus 35 (rAd35) expressing a fusion protein composed of Ag85A, Ag85B and TB10.4, for the capacity to induce antigen-specific cellular immune responses in rhesus macaques (Macaca mulatta). Control animals received diluent (3 animals).

Methods and Findings

Cellular immune responses were analyzed longitudinally (12 blood draws for each animal) using intracellular cytokine staining (TNF-alpha, IL-2 and IFN-gamma), T cell proliferation was measured in CD4+, CD8alpha/beta+, and CD8alpha/alpha+ T cell subsets and IFN-gamma production was tested in 7 day PBMC cultures (whole blood cell assay, WBA) using Ag85A, Ag85B, TB10.4 recombinant proteins, PPD or BCG as stimuli. Animals primed with AFRO-1 showed i) increased Ag85B-specific IFN-gamma production in the WBA assay (median >400 pg/ml for 6 animals) one week after the first boost with adenoviral-delivered TB-antigens as compared to animals primed with BCG (<200 pg/ml), ii) stronger T cell proliferation in the CD8alpha/alpha+ T cell subset (proliferative index 17%) as compared to BCG-primed animals (proliferative index 5% in CD8alpha/alpha+ T cells). Polyfunctional T cells, defined by IFN-gamma, TNF-alpha and IL-2 production were detected in 2/6 animals primed with AFRO-1 directed against Ag85A/b and TB10.4; 4/6 animals primed with BCG showed a Ag85A/b responses, yet only a single animal exhibited Ag85A/b and TB10.4 reactivity.

Conclusion

AFRO-1 induces qualitatively and quantitatively different cellular immune responses as compared with BCG in rhesus macaques. Increased IFN-gamma-responses and antigen-specific T cell proliferation in the CD8alpha/alpha+ T cell subset represents a valuable marker for vaccine-take in BCG-based TB vaccine trials  相似文献   

13.

Background

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.

Methods

A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and in silico mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.

Results

Cross-matching of literature and in silico-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.

Conclusion

The comprehensive literature and in silico-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of M. tuberculosis infection, to be incorporated in rBCG or subunit-based vaccines.  相似文献   

14.

Background

A substantial proportion of multiple sclerosis (MS) patients discontinue interferon-beta (IFNβ) treatment due to various adverse effects, most of which emerge at the early phase after initiation of the treatment and then diminish with time. At present, the molecular mechanism underlying IFNβ-related adverse effects remains largely unknown. The aim of this study is to identify a comprehensive list of early IFNβ-responsive genes (IRGs) in peripheral blood mononuclear cells (PBMC) that may play a key role in induction of adverse effects.

Methods

Total RNA of PBMC exposed to 50 ng/ml recombinant human IFNβ for 3 to 24 hours in vitro was processed for cDNA microarray analysis, followed by quantitative real-time RT-PCR analysis.

Results

Among 1,258 genes on the array, IFNβ elevated the expression of 107 and 87 genes, while it reduced the expression of 22 and 23 genes at 3 and 24 hours, respectively. Upregulated IRGs were categorized into conventional IFN-response markers, components of IFN-signaling pathways, chemokines, cytokines, growth factors, and their receptors, regulators of apoptosis, DNA damage, and cell cycle, heat shock proteins, and costimulatory and adhesion molecules. IFNβ markedly upregulated CXCR3 ligand chemokines (SCYB11, SCYB10 and SCYB9) chiefly active on effector T helper type 1 (Th1) T cells, and CCR2 ligand chemokines (SCYA8 and SCYA2) effective on monocytes, whereas it downregulated CXCR2 ligand chemokines (SCYB2, SCYB1 and IL8) primarily active on neutrophils.

Conclusion

IFNβ immediately induces a burst of gene expression of proinflammatory chemokines in vitro that have potential relevance to IFNβ-related early adverse effects in MS patients in vivo.  相似文献   

15.
16.
17.

Background

High levels of death and morbidity worldwide caused by tuberculosis has stimulated efforts to develop a new vaccine to replace BCG. A number of Mycobacterium tuberculosis (Mtb)-specific antigens have been synthesised as recombinant subunit vaccines for clinical evaluation. Recently a fusion protein of TB antigen Ag85B combined with a second immunodominant TB antigen TB10.4 was emulsified with a novel non-phospholipid-based liposomal adjuvant to produce a new subunit vaccine, investigated here. Currently, there is no consensus as to whether or not long-term T cell memory depends on a source of persisting antigen. To explore this and questions regarding lifespan, phenotype and cytokine patterns of CD4 memory T cells, we developed an animal model in which vaccine-induced CD4 memory T cells could transfer immunity to irradiated recipients.

Methodology/Principal Findings

The transfer of protective immunity using Ag85B-TB10.4-specific, CD45RBlow CD62Llow CD4 T cells was assessed in sub-lethally irradiated recipients following challenge with live BCG, used here as a surrogate for virulent Mtb. Donor T cells also carried an allotype marker allowing us to monitor numbers of antigen-specific, cytokine-producing CD4 T cells in recipients. The results showed that both Ag85B-TB10.4 and BCG vaccination induced immunity that could be transferred with a single injection of 3×106 CD4 T cells. Ten times fewer numbers of CD4 T cells (0.3×106) from donors immunised with Ag85B-TB10.4 vaccine alone, transferred equivalent protection. CD4 T cells from donors primed by BCG and boosted with the vaccine similarly transferred protective immunity. When BCG challenge was delayed for 1 or 2 months after transfer (a test of memory T cell survival) recipients remained protected. Importantly, recipients that contained persisting antigen, either live BCG or inert vaccine, showed significantly higher levels of protection (p<0.01). Overall the numbers of IFN-γ-producing CD4 T cells were poorly correlated with levels of protection.

Conclusions/Significance

The Ag85B-TB10.4 vaccine, with or without BCG-priming, generated TB-specific CD4 T cells that transferred protective immunity in mice challenged with BCG. The level of protection was enhanced in recipients containing a residual source of specific antigen that could be either viable or inert.  相似文献   

18.

Background

Interferon gamma release assays, including the QuantiFERON® TB Gold In Tube (QFT) have been shown to be accurate in diagnosing Mycobacterium tuberculosis infection. These assays however, do not discriminate between latent TB infection (LTBI) and active TB disease.

Methods

We recruited twenty-three pulmonary TB patients and 34 household contacts from Cape Town, South Africa and performed the QFT test. To investigate the ability of new host markers to differentiate between LTBI and active TB, levels of 29 biomarkers in QFT supernatants were evaluated using a Luminex multiplex cytokine assay.

Results

Eight out of 29 biomarkers distinguished active TB from LTBI in a pilot study. Baseline levels of epidermal growth factor (EGF) soluble CD40 ligand (sCD40L), antigen stimulated levels of EGF, and the background corrected antigen stimulated levels of EGF and macrophage inflammatory protein (MIP)-1β were the most informative single markers for differentiation between TB disease and LTBI, with AUCs of 0.88, 0.84, 0.87, 0.90 and 0.79 respectively. The combination of EGF and MIP-1β predicted 96% of active TB cases and 92% of LTBIs. Combinations between EGF, sCD40L, VEGF, TGF-α and IL-1α also showed potential to differentiate between TB infection states. EGF, VEGF, TGF-α and sCD40L levels were higher in TB patients.

Conclusion

These preliminary data suggest that active TB may be accurately differentiated from LTBI utilizing adaptations of the commercial QFT test that includes measurement of EGF, sCD40L, MIP-1β, VEGF, TGF-α or IL-1α in supernatants from QFT assays. This approach holds promise for development as a rapid diagnostic test for active TB.  相似文献   

19.
20.

Purpose

The receptor responsible for the attachment of bacillus Calmette-Guerin (BCG) to fibronectin, fibronectin attachment protein (FAP), has been cloned. Studies targeting FAP as an inducer of immunity in mycobacterial infections suggest that FAP is a highly immunogenic protein. In light of these findings and the need to find effective alternatives to BCG treatment for bladder cancer, we tested the ability of FAP to induce antitumor activity.

Materials and methods

The ability of FAP to bind to bladder tumor cells and the bladder wall was established using 125I-FAP. For testing antitumor activity in vivo, mice were catheterized and 5 × 104 MB-49 bladder tumor cells were implanted orthotopically on day 0. Test groups were treated with PBS only, FAP, or BCG on day 1 and day 8. A subset of mice was preimmunized with FAP prior to treatment.

Results

FAP was observed to bind to bladder tumor cells in a fibronectin-dependent manner. Attachment of FAP within the bladder followed the pattern established for BCG binding. Antitumor studies showed a significant reduction in tumor growth in FAP-treated mice that had been preimmunized with FAP. Tumor growth was not inhibited in naïve mice treated with FAP. Dose-response studies showed that FAP-induced antitumor activity is dose dependent, and experiments comparing BCG with FAP showed equivalent antitumor effects. In vitro experiments showed antigen-specific lymphocyte proliferation and a cytokine profile indicative of Th-1 polarization of the FAP-induced immune response. CD8+ T cells and natural killer cells were found to be required for the FAP-induced antitumor response.

Conclusions

FAP is an effective antitumor agent that inhibits tumor growth at a level equivalent to that observed for BCG. This protein may thus provide an alternative to BCG for treatment of superficial bladder cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号