首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Type 2 diabetes, insulin secretion and beta-cell mass   总被引:4,自引:0,他引:4  
In nondiabetic subjects, insulin secretion is sufficiently increased as a compensatory adaptation to insulin resistance whereas in subjects with type 2 diabetes, the adaptation is insufficient. Evidences for the islet dysfunction in type 2 diabetes are a)impaired insulin response to various challenges such as glucose, arginine and isoproterenol, b)defective dynamic of insulin secretion resulting in preferential reduction on first phase insulin secretion and irregular oscillations of plasma insulin and c)defective conversion of proinsulin to insulin leading to elevated proinsulin to insulin ratio. In addition, recent studies have also presented evidence of a reduced beta cell mass in diabetes, caused predominantly by enhanced islet apoptosis, although this needs to be confirmed in more studies. These defects may be caused by primary beta cell defects, such as seen in the monogenic diabetes forms of MODY, or by secondary beta cell defects, caused by glucotoxicity, lipotoxicity or islet amyloid aggregation. The defects may also be secondary to defective beta cell stimulation by incretin hormones or the autonomic nerves. The appreciation of islet dysfunction as a key factor underlying the progression from an insulin resistant state into type 2 diabetes has therapeutic implications, since besides improvement of insulin sensitivity, treatment should also aim at improving the islet compensation. This may possibly be achieved by stimulating insulin secretion, supporting islet stimulating mechanisms, removing toxic beta-cell insults and inhibiting beta cell apoptosis.  相似文献   

2.
In addition to promoting insulin secretion, an increase in cytosolic Ca(2+) triggered by glucose has been shown to be crucial for spreading of beta-cells attached on extracellular matrix (804G matrix). Calpains are Ca(2+)-dependent cysteine proteases involved in an extended spectrum of cellular responses, including cytoskeletal rearrangements and vesicular trafficking. The present work aimed to assess whether calpain is also implicated in the process of Ca(2+)-induced insulin secretion and spreading of rat pancreatic beta-cells. The results indicate calpain dependency of beta-cell spreading on 804G matrix. Indeed, treatment with three distinct calpain inhibitors (N-Ac-Leu-Leu-norleucinal, calpeptin, and ethyl(+)-(2S,3S)-3-[(S)-3-methyl-1-(3-methylbutylcarbamoyl)butyl-carbamoyl]-2-ox-iranecarboxylate) inhibited cell spreading induced by glucose and KCl, whereas cell attachment was not significantly modified. Calpain inhibitors also suppressed glucose- and KCl-stimulated insulin secretion without affecting insulin synthesis. Washing the inhibitor out of the cell culture restored spreading on 804G matrix and insulin secretory response after 24 h. In addition, incubation with calpeptin did not affect insulin secretory response to mastoparan that acts on exocytosis downstream of intracellular calcium [Ca(2+)]i. Finally, calpeptin was shown to affect the [Ca(2+)]i response to glucose but not to KCl. In summary, the results show that inhibition of calpain blocks spreading and insulin secretion of primary pancreatic beta-cells. It is therefore suggested that calpain could be a mediator of Ca(2+)-induced-insulin secretion and beta-cell spreading.  相似文献   

3.
Electrophysiological studies of cultured rat pancreatic beta-cells using intracellular microelectrodes show that exogenous insulin over the range of 0.1 -- 10.0 microng/ml inhibits the electrical activity due to 27.8 mM glucose in a dose-related manner. This inhibitory effect is manifested by a mean increase of the membrane potential from about --20 to --30 mV and inhibition of the number of cells impaled showing spike activity from 60 to less than 10%. The inhibitory influence of insulin is rapid occurring within 5 min for the highest level used. The results provide evidence for a negative feedback role of insulin in regulating its own release.  相似文献   

4.
Enzymatic methylation of endogenous proteins in clonal pancreatic beta-cell, HIT-T15, was investigated. When cell extract incubated with S-adenosyl-L-[methyl-3H]methionine was subjected to SDS-PAGE followed by fluorography, endogenous 20-kDa protein was highly [methyl-3H]-labeled. The increase of methylation was correlated with insulin secretion, when the cells were treated with secretagogue; at 5.5mM glucose, insulin secretion increased by 2.5-fold, while the 20-kDa methylation to about 3.2-fold. In the case of forskolin, another secretagogue, at 0.1mM, the methylation increased by approximately 4.5-fold. This increase of 20-kDa methylation was inhibited when the cells were treated with 3mM EGTA to inhibit insulin secretion by depleting extracellular calcium ion, indicating intercausal relation between methylation and insulin secretion. The [methyl-3H]-labeled amino acids were identified by thin layer chromatography as N(G)-methylated arginines. While arginyl residues in Gly-Arg-Gly sequence are known to be posttranslationally methylated, a synthetic nonapeptide, GGRGRGRGG, competed with the 20-kDa methylation; at 1 and 10 micro M nonapeptides, 62% and 78% of 20-kDa methylation were inhibited, respectively. Furthermore, Western immunoblot analysis of HIT cell extract against GGRGRGRGG antibodies strongly immunoreacted with the 20-kDa protein. These results suggested that methylation of the endogenous 20-kDa protein might play some role in insulin secretion.  相似文献   

5.
In health insulin is secreted in discrete insulin secretory bursts from pancreatic beta-cells, collectively referred to as beta-cell mass. We sought to establish the relationship between beta-cell mass, insulin secretory-burst mass, and hepatic insulin clearance over a range of age-related insulin sensitivity in adult rats. To address this, we used a novel rat model with chronically implanted portal vein catheters in which we recently established the parameters to permit deconvolution of portal vein insulin concentration profiles to measure insulin secretion and resolve its pulsatile components. In the present study, we examined total and pulsatile insulin secretion, insulin sensitivity, hepatic insulin clearance, and beta-cell mass in 35 rats aged 2-12 mo. With aging, insulin sensitivity declined, but euglycemia was sustained by an adaptive increase in fasting and glucose-stimulated insulin secretion through the mechanism of a selective augmentation of insulin pulse mass. The latter was attributable to a closely related increase in beta-cell mass (r=0.8, P<0.001). Hepatic insulin clearance increased with increasing portal vein insulin pulse amplitude, damping the delivery of insulin in the systemic circulation. In consequence, the curvilinear relationship previously reported between insulin secretion and insulin sensitivity was extended to both insulin pulse mass and beta-cell mass vs. insulin sensitivity. These data support a central role of adaptive changes in beta-cell mass to permit appropriate insulin secretion in the setting of decreasing insulin sensitivity in the aging animal. They emphasize the cooperative role of pancreatic beta-cells and the liver in regulating the secretion and delivery of insulin to the systemic circulation.  相似文献   

6.
7.
8.
As an alternative to manual assays that track insulin secretion, we tested a silicon-based biosensor that allows automated monitoring of extracellular acidification. Glucose stimulation of INS-1 and HIT-T15 cells resulted in a rapid increase in extracellular acidification in a biphasic and concentration-dependent fashion much like insulin secretion (EC(50) INS-1=5 mM and HIT-T15=1 mM). This response was attenuated by verapamil (10 microM) and stimulated by administration of glybenclamide (100 nM) or KCl-induced (40 mM) depolarization. These experiments suggest that automated monitoring of extracellular pH may be a useful assay and support the relevance of linking metabolic activity to insulin secretion.  相似文献   

9.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

10.
Flavan-3-ols, such as green tea catechins represent a major group of phenolic compounds with significant medicinal properties. We describe the construction and optimization of Escherichia coli recombinant strains for the production of mono- and dihydroxylated catechins from their flavanone and phenylpropanoid acid precursors. Use of glucose minimal medium, Fe(II), and control of oxygen availability during shake-flask experiments resulted in production yield increases. Additional production improvement resulted from the use of medium rather than high-copy number plasmids and, in the case of mono-hydroxylated compounds, the addition of extracellular cofactors in the culture medium. The established metabolic engineering approach allowed the biosynthesis of natural catechins at high purity for assessing their possible insulinotropic effects in pancreatic beta-cell cultures. We demonstrated that (+)-afzelechin and (+)-catechin modulated the secretion of insulin by pancreatic beta-cells. These results indicate the potential of applying metabolic engineering approaches for the synthesis of natural and non-natural catechin analogues as drug candidates in diabetes treatments.  相似文献   

11.
Insulin is the main hormone involved in the regulation of glycaemia, its impaired secretion is a hallmark of type I and type II diabetic individuals. Additionally, insulin is involved in lipogenesis and weight gain, provoking an anorexigenic action. The endocannabinoid system contributes to the physiological regulation of energy balance, food intake and lipid and glucose metabolisms. Despite that, an experimental link between the endocannabinoid system and the endocrine pancreas has not yet been described. Using quantitative real-time PCR and immunocytochemistry, we have demonstrated the existence of both CB1 and CB2 receptors in the endocrine pancreas. While the CB1 receptor is mainly expressed in non-beta-cells, the CB2 type exists in beta- and non-beta-cells within the islet. The endocannabinoid 2-arachidonylglycerol (2-AG) through CB2 receptors regulates [Ca(2+)](i) signals in beta-cells and as a consequence, it decreases insulin secretion. This effect may be a new component involved in the orexigenic effect of endocannabinoids and constitutes a potential target for pharmacologic manipulation of the energy balance.  相似文献   

12.
Lipid and glucose metabolism are adversely affected by diabetes, a disease characterized by pancreatic beta-cell dysfunction. To clarify the role of lipids in insulin secretion, we generated mice with beta-cell-specific overexpression (betaLPL-TG) or inactivation (betaLPL-KO) of lipoprotein lipase (LPL), a physiologic provider of fatty acids. LPL enzyme activity and triglyceride content were increased in betaLPL-TG islets; decreased LPL enzyme activity in betaLPL-KO islets did not affect islet triglyceride content. Surprisingly, both betaLPL-TG and betaLPL-KO mice were strikingly hyperglycemic during glucose tolerance testing. Impaired glucose tolerance in betaLPL-KO mice was present at one month of age, whereas betaLPL-TG mice did not develop defective glucose homeostasis until approximately five months of age. Glucose-simulated insulin secretion was impaired in islets isolated from both mouse models. Glucose oxidation, critical for ATP production and triggering of insulin secretion mediated by the ATP-sensitive potassium (KATP) channel, was decreased in betaLPL-TG islets but increased in betaLPL-KO islets. Islet ATP content was not decreased in either model. Insulin secretion was defective in both betaLPL-TG and betaLPL-KO islets under conditions causing calcium-dependent insulin secretion independent of the KATP channel. These results show that beta-cell-derived LPL has two physiologically relevant effects in islets, the inverse regulation of glucose metabolism and the independent mediation of insulin secretion through effects distal to membrane depolarization.  相似文献   

13.
Light exposure was measured in 30 permanent night nurses to determine if specific light/dark profiles could be associated with a better circadian adaptation. Circadian adaptation was defined as a significant shift in the timing of the episode of melatonin secretion into the daytime. Light exposure was continuously recorded with ambulatory wrist monitors for 56 h, including 3 consecutive nights of work. Participants were then admitted to the laboratory for 24 h where urine was collected every 2 h under dim light for the determination of 6-sulphatoxymelatonin concentration. Cosinor analysis was used to estimate the phase position of the episode of melatonin secretion. Five participants showed a circadian adaptation by phase delay ("delayed participants") and 3 participants showed a circadian adaptation by phase advance ("advanced participants"). The other 22 participants had a timing of melatonin secretion typical of day-oriented people ("nonshifters"). There was no significant difference between the 3 groups for total light exposure or for bright light exposure in the morning when traveling home. However, the 24-h profiles of light exposure were very distinctive. The timing of the main sleep episode was associated with the timing of light exposure. Delayed participants, however, slept in darker bedrooms, and this had a major impact on their profile of light/dark exposure. Delayed and advanced participants scored as evening and morning types, respectively, on a morningness-eveningness scale. This observation suggests that circadian phase prior to night work may contribute to the initial step toward circadian adaptation, later reinforced by specific patterns of light exposure.  相似文献   

14.
A Sj?holm 《FEBS letters》1991,294(3):257-260
Long-term effects of the protein kinase C activating phorbol ester, TPA, on pancreatic beta-cell proliferation and insulin production were investigated. It was found that beta-cell replication and long-term insulin secretion were enhanced in TPA-treated islets. This was not accompanied by a corresponding increase in (pro)insulin biosynthesis, presumably contributing to the lowered islet insulin content. TPA also increased islet polyamine content but when this increase was prevented by blocking polyamine synthesis, DNA replication and insulin secretion remained elevated. These findings indicate that TPA stimulates beta-cell replication and insulin secretion and suggest a stimulatory role for protein kinase C, but not for polyamines, in these processes.  相似文献   

15.
To investigate early secretory defects in prediabetes, we evaluated beta-Cell function and insulin sensitivity (M value, by euglycemic clamp) in 26 normotolerant first-degree relatives of type 2 diabetic patients (FDR) and 17 age- and weight-matched control subjects. beta-Cell function was assessed by modeling analysis of glucose and C-peptide concentrations measured during 24 h of standardized living conditions. Fasting and total insulin secretion (ISR) were increased in FDR, as was ISR at a reference 5 mM glucose level (ISR5, 107 +/- 6 vs. 87 +/- 6 pmol x min(-1) x m(-2), P < 0.05). ISR5 was inversely related to M in controls (ISR5 = k/M1.23, rho = -0.74, P < 0.005) but not in FDR; when M was accounted for (by calculating a compensation index ISR5 x M1.23), compensation for insulin resistance was impaired in FDR (10.8 +/- 1.0 vs. 13.4 +/- 0.6 units, P < 0.05). Potentiation of ISR, expressing relative transient increases in glucose-stimulated ISR during meals, was impaired in FDR (1.29 +/- 0.08 vs. 1.62 +/- 0.08 during 1st meal, P < 0.02). Moreover, the potentiation time course was related to glucose-dependent insulin-releasing polypeptide (GIP) concentrations in both groups, and the sensitivity of potentiation to GIP derived from this relationship tended to be impaired in FDR. Compensation index, potentiation, and sensitivity to GIP were interrelated parameters (P < 0.05 or less). beta-Cell function parameters were also related to mean 24-h glucose levels (r2 = 0.63, P < 0.0001, multivariate model). In conclusion, although in absolute terms ISR is increased in insulin-resistant FDR, beta-cell function shows a cluster of interrelated abnormalities involving compensation for insulin resistance, potentiation, and sensitivity to GIP, suggesting a beta-cell defect in the amplifying pathway of insulin secretion.  相似文献   

16.
17.
Mitochondria play an essential role in metabolism-secretion coupling in the pancreatic beta-cell. Dysfunction of the organelle leads to impaired glucose-stimulated insulin secretion, as exemplified by the rare disease mitochondrial diabetes, which is caused by mutations in the mitochondrial DNA. In the excitable beta-cell, mitochondria generate ATP and possibly other coupling factors that promote plasma membrane depolarization and calcium influx triggering insulin exocytosis. Cytosolic calcium signals are relayed into the mitochondria, where the ion potentiates oxidative metabolism. Hormones such as glucagon-like peptide 1 (GLP-1) or neurotransmitter secretagogues stimulate the beta-cell by activating different signal transduction pathways eventually also raising mitochondrial calcium. Likewise, pharmacological inhibition of the Na(+)/Ca(2+) exchanger of the inner mitochondrial membrane augments intra-organellar calcium and insulin secretion. Islets obtained after autopsy from type 2 diabetic patients have altered mitochondrial morphology impaired glucose oxidation and reduced ATP generation, explaining defective insulin secretion. We hypothesize that the improvement of glucose-stimulated insulin secretion by sulfonylurea compounds in type 2 diabetic patients is in part due to their capacity to raise mitochondrial calcium, which is beneficial for the generation of metabolic coupling factors.  相似文献   

18.
Cough reflex in rabbits 24-h and 48-h after sulphur dioxide breathing   总被引:1,自引:0,他引:1  
The cough reflex elicitability (CRE), cough reflex strength (CRS) and Hering-Breuer inflation reflex (HBIR) were studied in 51 anaesthetized (Pentobarbital Spofa, 30 mg/kg, i.v.) female rabbits 24-h and 48-h after SO2 breathing. To provoke cough, the interior of the trachea and carina were stroked with a polyethylene catheter. To elicit the HBIR, the lungs were inflated to 1.0 kPa intratracheal pressure. Intrapleural and systemic blood pressures were recorded. The CRE, CRS and HBIR obtained 24-h and 48-h after SO2 breathing were compared with correspondent values of control animals. It was found, that CRE and HBIR were fully recovered 24-h after SO2 breathing, but the CRS was still decreased, however, there were no significant differences in CRE, CRS and HBIR between animals 48-h after SO2 breathing and control animals. It can be concluded, that decrease of the CRS 24-h after SO2 breathing is not due to slowly adapting stretch receptors block of airways.  相似文献   

19.
Our aim was to investigate motor activity of the healthy, relatively unprepared colon in the ambulatory state. Twenty-five age- and gender-matched adults had a six-sensor solid-state probe inserted into the proximal transverse colon without sedation. Subjects ambulated freely and ate standard meals. In 528 h of recording, we found a lower (P < 0.05) area under the curve during the night. Waking induced a threefold increase in motility, whereas meals induced a twofold increase. Women showed less activity (P < 0.05) in the transverse/descending colon than men. The transverse/descending colon showed more (P < 0.05) activity than the rectosigmoid colon. Seven patterns were recognized; predominantly, they were simultaneous, propagated, or periodic bursts of 3-cycles/min (cpm) waves. A specialized propagating pressure wave with a high amplitude (>105 mmHg) and a prolonged duration (>14 s) occurred in all subjects (mean 10/day), mostly after waking, after meals, or with defecation. A 3-cpm motor activity was seen in the rectosigmoid region predominantly at night. The colon exhibits a wide spectrum of pressure activity around the clock, with gender and regional differences and circadian rhythm. This comprehensive study provides qualitative and quantitative normative data for colonic manometry.  相似文献   

20.
The endocrine cells in the pancreatic islet have cellular communication between the heterotypic cells as well as the homotypic cells. The present study was conducted to elucidate the cellular interaction between pancreatic alpha cells and beta cells utilizing differentiated mouse cell lines (i.e., alphaTC clone 6 and betaTC cells). Co-culture of these two cell lines on a gyratory shaker generated numerous cellular aggregates of homogenous size within 48 h. Immunohistochemical staining for insulin and glucagon demonstrated that betaTC cells were located in the central core of each aggregate, while alphaTC cells formed a mantle layer surrounding the betaTC cells. This segregation was observed regardless of the ratios of the two cell types employed. Although glucagon at concentrations of 10(-8) M or higher stimulated insulin secretion from betaTC cells in both monolayer and aggregates, an increase in the ratio of alphaTC/betaTC cells in aggregate cultures was accompanied by a decrease in secreted insulin and a rise in intracellular insulin content of the betaTC component. The inhibitory effect of alphaTC cells on betaTC insulin secretion was not limited to aggregate culture, since insulin secretion from betaTC cells was also suppressed, and intracellular insulin content increased, by co-culture of alphaTC with betaTC cells in monolayer. On the other hand, the secreted and intracellular insulin of betaTC cells was not affected by alphaTC cells in a Transwell co-culture system in which direct cell-to-cell contacts were prevented by a semipermeable membrane that permitted chemical communication via medium metabolites. These data suggest that the insulin secretion from betaTC cells may be inhibited possibly as a result of the contact with alphaTC cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号