首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two-photon excitation microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Since two-photon excitation occurs only at the focal point of the microscope, it inherently provides three-dimensional resolution. This localization of excitation also minimizes photobleaching and photodamage, which are the ultimate limiting factors in imaging living cells. Furthermore, no pinhole is required to attain three-dimensional discrimination, so the efficiency of fluorescence collection is increased. These advantages allow experiments on thick living samples that would not be possible with other imaging techniques. The cost and complexity of the lasers required for two-photon excitation microscopy have limited its use, but appropriate turn-key lasers have now been introduced, and their cost should decrease. Finally, the recent introduction of commercial two-photon excitation laser-scanning microscope systems allows a much larger group of researchers access to this state-of-the-art methodology.  相似文献   

2.
Characteristic X-ray fluorescence is a technique that can be used to establish elemental concentrations for a large number of different chemical elements simultaneously in different locations in cell and tissue samples. Exposing the samples to an X-ray beam is the basis of X-ray fluorescence microscopy (XFM). This technique provides the excellent trace element sensitivity; and, due to the large penetration depth of hard X-rays, an opportunity to image whole cells and quantify elements on a per cell basis. Moreover, because specimens prepared for XFM do not require sectioning, they can be investigated close to their natural, hydrated state with cryogenic approaches. Until several years ago, XFM was not widely available to bio-medical communities, and rarely offered resolution better then several microns. This has changed drastically with the development of third-generation synchrotrons. Recent examples of elemental imaging of cells and tissues show the maturation of XFM imaging technique into an elegant and informative way to gain insight into cellular processes. Future developments of XFM-building of new XFM facilities with higher resolution, higher sensitivity or higher throughput will further advance studies of native elemental makeup of cells and provide the biological community including the budding area of bionanotechnology with a tool perfectly suited to monitor the distribution of metals including nanovectors and measure the results of interactions between the nanovectors and living cells and tissues.  相似文献   

3.
We describe the technique and application of energy filtering, automated most-probable loss (MPL) tomography to intermediate voltage electron microscopy (IVEM). We show that for thick, selectively stained biological specimens, this method produces a dramatic increase in resolution of the projections and the computed volumes versus standard unfiltered transmission electron microscopy (TEM) methods. This improvement in resolution is attributed to the reduction of chromatic aberration, which results from the large percentage of inelastic electron-scattering events for thick specimens. These improvements are particularly evident at the large tilt angles required to improve tomographic resolution in the z-direction. This method effectively increases the usable thickness of selectively stained samples that can be imaged at a given accelerating voltage by dramatically improving resolution versus unfiltered TEM and increasing signal-to-noise versus zero-loss imaging, thereby expanding the utility of the IVEM to deliver information from within specimens up to 3 microm thick.  相似文献   

4.
Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (< 1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy.  相似文献   

5.
6.
Three-dimensional light microscopy of diploid Drosophila chromosomes   总被引:3,自引:0,他引:3  
Fluorescence microscopy, uniquely, provides the ability to examine specific components within intact, even living, cells. Unfortunately, high-resolution conventional fluorescence microscopy is intrinsically a two-dimensional technique and performs poorly with specimens thicker than about 0.5 micron. Probing the spatial organization of components within cells has required the development of new methods optimized for three-dimensional data collection, processing, display, and interpretation. Our interest in understanding the relationship between chromosome structure and function has led us to develop the necessary methodology for exploring cell structures in three dimensions. It is now possible to determine directly the three-dimensional spatial organization of diploid chromosomes within intact nuclei throughout most of the mitotic the cell cycle.  相似文献   

7.
Optical microscopy is an indispensable tool that is driving progress in cell biology. It still is the only practical means of obtaining spatial and temporal resolution within living cells and tissues. Most prominently, fluorescence microscopy based on dye-labeling or protein fusions with fluorescent tags is a highly sensitive and specific method of visualizing biomolecules within sub-cellular structures. It is however severely limited by labeling artifacts, photo-bleaching and cytotoxicity of the labels. Coherent Raman Scattering (CRS) has emerged in the last decade as a new multiphoton microscopy technique suited for imaging unlabeled living cells in real time with high three-dimensional spatial resolution and chemical specificity. This technique has proven to be particularly successful in imaging unstained lipids from artificial membrane model systems, to living cells and tissues to whole organisms. In this article, we will review the experimental implementations of CRS microscopy and their application to imaging lipids. We will cover the theoretical background of linear and non-linear vibrational micro-spectroscopy necessary for the understanding of CRS microscopy. The different experimental implementations of CRS will be compared in terms of sensitivity limits and excitation and detection methods. Finally, we will provide an overview of the applications of CRS microscopy to lipid biology.  相似文献   

8.
Y Zhang  S Sheng    Z Shao 《Biophysical journal》1996,71(4):2168-2176
It has long been recognized that one of the major limitations in biological atomic force microscopy (AFM) is the softness of most biological samples, which are easily deformed or damaged by the AFM tip, because of the high pressure in the contact area, especially from the very sharp tips required for high resolution. Another is the molecular motion present at room temperature due to thermal fluctuation. Using an AFM operated in liquid nitrogen vapor (cryo-AFM), we demonstrate that cryo-AFM can be applied to a large variety of biological samples, from immunoglobulins to DNA to cell surfaces. The resolution achieved with cryo-AFM is much improved when compared with AFM at room temperature with similar specimens, and is comparable to that of cryo-electron microscopy on randomly oriented macromolecules. We will also discuss the technical problems that remain to be solved for achieving even higher resolution with cryo-AFM and other possible applications of this novel technique.  相似文献   

9.
We report superresolution fluorescence microscopy in an intact living organism, namely Caenorhabditis elegans nematodes expressing green fluorescent protein (GFP)-fusion proteins. We also superresolve, by stimulated emission depletion (STED) microscopy, living cultured cells, demonstrating that STED microscopy with GFP can be widely applied. STED with GFP can be performed with both pulsed and continuous-wave lasers spanning a wide wavelength range from at least 556–592 nm. Acquiring subdiffraction resolution images within seconds enables the recording of movies revealing structural dynamics. These results demonstrate that numerous microscopy studies of live samples employing GFP as the marker can be performed at subdiffraction resolution.  相似文献   

10.
Advances in the technologies for labeling and imaging biological samples drive a constant progress in our capability of studying structures and their dynamics within cells and tissues. In the last decade, the development of numerous nonlinear optical microscopies has led to a new prospective both in basic research and in the potential development of very powerful noninvasive diagnostic tools. These techniques offer large advantages over conventional linear microscopy with regard to penetration depth, spatial resolution, three-dimensional optical sectioning, and lower photobleaching. Additionally, some of these techniques offer the opportunity for optically probing biological functions directly in living cells, as highlighted, for example, by the application of second-harmonic generation to the optical measurement of electrical potential and activity in excitable cells. In parallel with imaging techniques, nonlinear microscopy has been developed into a new area for the selective disruption and manipulation of intracellular structures, providing an extremely useful tool of investigation in cell biology. In this review we present some basic features of nonlinear microscopy with regard both to imaging and manipulation, and show some examples to illustrate the advantages offered by these novel methodologies.  相似文献   

11.
Optical clearing techniques provide unprecedented opportunities to study large tissue samples at histological resolution, eliminating the need for physical sectioning while preserving the three-dimensional structure of intact biological systems. There is significant potential for applying optical clearing to reproductive tissues. In testicular biology, for example, the study of spermatogenesis and the use of spermatogonial stem cells offer high-impact applications in fertility medicine and reproductive biotechnology. The objective of our study is to apply optical clearing, immunofluorescence, and confocal microscopy to testicular tissue in order to reconstruct its three-dimensional microstructure in intact samples. We used Triton-X/DMSO clearing in combination with refractive index matching to achieve optical transparency of fixed mouse testes. An antibody against smooth muscle actin was used to label peritubular myoid cells of seminiferous tubules while an antibody against ubiquitin C-terminal hydrolase was used to label Sertoli cells and spermatogonia in the seminiferous epithelium. Specimens were then imaged using confocal fluorescence microscopy. We were able to successfully clear testicular tissue and utilize immunofluorescent probes. Additionally, we successfully visualized the histological compartments of testicular tissue in three-dimensional reconstructions. Optical clearing combined with immunofluorescence and confocal imaging offers a powerful new method to analyze the cytoarchitecture of testicular tissue at histological resolution while maintaining the macro-scale perspective of the intact system. Considering the importance of the murine model, our developed method represents a significant contribution to the field of male reproductive biology, enabling the study of testicular function.  相似文献   

12.
原子力显微技术作为一门新发展起来的显微成像技术,不仅具有在近生理条件下对样本实时、高分辨率三维成像等特点,而且能通过力矩测量探知样本物理性状。即给人们认识微生物的表面结构提供又一平台,也为揭示微生物表面结构与功能之间的关系提供一种新方法。介绍了对微生物表面形态观测中常用测量模式和某些样品固定方法:多孔膜技术、凹陷技术,概括近年来原子力显微技术在微生物学中的应用情况。  相似文献   

13.
Xu K  Babcock HP  Zhuang X 《Nature methods》2012,9(2):185-188
By combining astigmatism imaging with a dual-objective scheme, we improved the image resolution of stochastic optical reconstruction microscopy (STORM) and obtained <10-nm lateral resolution and <20-nm axial resolution when imaging biological specimens. Using this approach, we resolved individual actin filaments in cells and revealed three-dimensional ultrastructure of the actin cytoskeleton. We observed two vertically separated layers of actin networks with distinct structural organizations in sheet-like cell protrusions.  相似文献   

14.
Soft x-ray microscopy   总被引:5,自引:0,他引:5  
Soft x-ray microscopes are beginning to provide information to complement that obtained from optical and electron microscopy. Soft x-ray microscopy can deliver 30-nm resolution images of hydrated cells up to approximately 10 microns thick, and efforts towards obtaining higher resolution are under way. Although living specimens cannot be studied readily except in single exposures, fixed samples can be imaged at high resolution, and flash-frozen specimens can be studied without chemical modification and without significant radiation damage. Tomography is being developed for 3-D imaging, and spectromicroscopy offers unique capabilities for biochemical mapping of unlabelled structures beyond those of gold and fluorescent labels. Currently, most soft x-ray microscopes operate at synchrotron radiation facilities, but laboratory-scale microscopes are being developed too.  相似文献   

15.
Light sheet microscopy is a versatile imaging technique with a unique combination of capabilities. It provides high imaging speed, high signal-to-noise ratio and low levels of photobleaching and phototoxic effects. These properties are crucial in a wide range of applications in the life sciences, from live imaging of fast dynamic processes in single cells to long-term observation of developmental dynamics in entire large organisms. When combined with tissue clearing methods, light sheet microscopy furthermore allows rapid imaging of large specimens with excellent coverage and high spatial resolution. Even samples up to the size of entire mammalian brains can be efficiently recorded and quantitatively analyzed. Here, we provide an overview of the history of light sheet microscopy, review the development of tissue clearing methods, and discuss recent technical breakthroughs that have the potential to influence the future direction of the field.  相似文献   

16.
Summary— Confocal scanning optical microscopy has significant advantages over conventional fluorescence microscopy: it rejects the out-of-locus light and provides a greater resolution than the wide-field microscope. In laser scanning optical microscopy, the specimen is scanned by a diffraction-limited spot of laser light and the fluorescence emission (or the reflected light) is focused onto a photodetector. The imaged point is then digitized, stored into the memory of a computer and displayed at the appropriate spatial position on a graphic device as a part of a two-dimensional image. Thus, confocal scanning optical microscopy allows accurate non-invasive optical sectioning and further three-dimensional reconstruction of biological specimens. Here we review the recent technological aspects of the principles and uses of the confocal microscope, and we introduce the different methods of three-dimensional imaging.  相似文献   

17.
A single-projection structure analysis of a bacterial outer membrane protein, OmpC, has been carried out by electron microscopy of frozen hydrated specimens. Two distinct crystal polymorphs have been observed in the frozen-hydrated samples, and projection structures of both forms have been obtained to a resolution of 13.5 A. Preliminary examination of negatively stained samples revealed the expected, trimeric appearance of pores in the OmpC specimens. Electron microscopy of unstained, frozen-hydrated OmpC reveals the trimeric pore structure with equal clarity. In addition, the overall molecular envelope of the protein is readily discerned, and a major lipid-containing domain can also be seen. Because of the small coherent patch size, mosaic disorder, and unpredictable polymorphism of the presently available specimens, three-dimensional reconstruction of frozen-hydrated OmpC has not been carried out.  相似文献   

18.
In this study, we aimed at improving the temporal resolution of scanning probe microscopy (SPM) for observing living cells by introducing soft cantilevers, low feedback-gain operations, and cantilever deflection imaging. We achieved visualization of the mechanical architecture in leading lamellae of living fibroblasts at a temporal resolution of around 10 s, which is higher than that of conventional contact-mode SPM. Time-lapse SPM could be used to monitor not only cytoskeletal dynamics but also the dynamics of numerous microgranules. Statistical analysis of microgranular motion revealed that the microgranules have superdiffusive behaviors and significant directional order of motion. We also found that the direction of their motion is correlated with the direction of growing actin stress fibers. The combination of SPM with fluorescence microscopy showed that vinculin, a component of cell-substratum adhesion sites, localizes at the microgranules. Our experimental data provides a new insight into the intracellular mechanical architecture and its structural dynamics, suggesting that high-speed live-cell SPM has great potential for investigating the structural origin of cellular dynamics.  相似文献   

19.
Super-resolution fluorescence microscopy allows for obtaining images with a resolution of 10–20 nm, far exceeding the diffraction limit of conventional optical microscopy (200–350 nm), and provides an opportunity to study in detail the subcellular structures and individual proteins in both living and fixed cells. Among these methods, single-molecule localization microscopy (SMLM) has become widespread. SMLM techniques are based on special fluorophores capable of photoswitching. The paper presents a classification of such fluorophores and describes their photoswitching mechanisms and successful practical applications. We discuss recent progress and prospects for the development of new effective labels suitable for SMLM.  相似文献   

20.
Light‐sheet fluorescence microscopy (LSFM) is a powerful tool for biological studies because it allows for optical sectioning of dynamic samples with superior temporal resolution. However, LSFM using 2 orthogonally co‐aligned objectives requires a special sample geometry, and volumetric imaging speed is limited due to physical sample translation. This paper describes an oblique scanning 2‐photon LSFM (OS‐2P‐LSFM) that eliminates these limitations by using a single objective near the sample and a refractive scanning‐descanning system. This system also provides improved light‐sheet confinement against scattering by using a 2‐photon Bessel beam. The OS‐2P‐LSFM hold promise for studying structural, functional and dynamic aspects of living tissues and organisms because it allows for high‐speed, translation‐free and scattering‐robust 3D imaging of large biological specimens.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号