首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like many other eubacteria, cultures of Escherichia coli accumulate cyclopropane fatty acids (CFAs) at a well-defined stage of growth, due to the action of the cytoplasmic enzyme CFA synthase. We report the isolation of the putative structural gene, cfa, for this enzyme on an E. coli-ColE1 chimeric plasmid by the use of an autoradiographic colony screening technique. When introduced into a variety of E. coli strains, this plasmid, pLC18-11, induced corresponding increases in CFA content and CFA synthase activity. Subsequent manipulation of the cfa locus, facilitated by the insertion of pLC18-11 into a bacteriophage lambda vector, allowed genetic and physiological studies of CFA synthase in E. coli. Overproduction of this enzyme via multicopy cfa plasmids caused abnormally high levels of CFA in membrane phospholipid but no discernable growth perturbation. Infection with phage lambda derivatives bearing cfa caused transient overproduction of the enzyme, although pL-mediated expression of cfa could not be demonstrated in plasmids derived from such phages. CFA synthase specific activities could be raised to very high levels by using cfa runaway-replication plasmids. A variety of physiological factors were found to modulate the levels of CFA synthase in normal and gene-amplified cultures. These studies argue against several possible mechanisms for the temporal regulation of CFA formation.  相似文献   

2.
A Y Wang  D W Grogan  J E Cronan 《Biochemistry》1992,31(45):11020-11028
Cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes a modification of the acyl chains of phospholipid bilayers. We report (i) identification of the CFA synthase protein, (ii) overproduction (> 600-fold) and purification to essential homogeneity of the enzyme, and (iii) the amino acid sequence of CFA synthase as deduced from the nucleotide sequence of the cfa gene. CFA synthase was overproduced by use of the T7 promoter/RNA polymerase system under closely defined conditions. The enzyme was readily purified by a two-step procedure requiring only ammonium sulfate fractionation and binding to phospholipid vesicles followed by flotation in sucrose density gradients. The deduced amino acid sequence predicts a protein of 43,913 Da (382 residues) that lacks long hydrophobic segments. The CFA synthase sequence has no significant similarity to known proteins except for sequences found in other enzymes that utilize S-adenosyl-L-methionine. We also report inhibitor studies of the enzyme active site.  相似文献   

3.
4.
F R Taylor  J E Cronan 《Biochemistry》1979,18(15):3292-3300
The cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes the methylenation of the unsaturated moieties of phospholipids in a phospholipid bilayer. The methylene donor is S-adenosyl-L-methionine. The enzyme is loosely associated with the inner membrane of the bacterium and binds to and is stabilized by phospholipid vesicles. The enzyme has been purified over 500-fold by flotation with phospholipid vesicles and appears to be a monomeric protein having a molecular weight of about 90 000. The enzyme binds only to vesicles of phospholipids which contain either unsaturated or cyclopropane fatty acid moieties. CFA synthase is active on phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin, the major phospholipids of E. coli, and also has some activity on phosphatidylcholine. The enzyme is equally active on phospholipid vesicles in the ordered or the disordered states of the lipid phase transition. Studies with a reagent that reacts only with the phosphatidylethanolamine molecules of the outer leaflet of a phospholipid bilayer indicate that CFA synthase reacts with phosphatidylethanolamine molecules of both the outer and the inner leaflets of phospholipid vesicles.  相似文献   

5.
6.
7.
The expression of a plant (Umbellularia californica) medium-chain acyl-acyl carrier protein (ACP) thioesterase (BTE) cDNA in Escherichia coli results in a very high level of extractable medium-chain-specific hydrolytic activity but causes only a minor accumulation of medium-chain fatty acids. BTE's full impact on the bacterial fatty acid synthase is apparent only after expression in a strain deficient in fatty acid degradation, in which BTE increases the total fatty acid output of the bacterial cultures fourfold. Laurate (12:0), normally a minor fatty acid component of E. coli, becomes predominant, is secreted into the medium, and can accumulate to a level comparable to the total dry weight of the bacteria. Also, large quantities of 12:1, 14:0, and 14:1 are made. At the end of exponential growth, the pathway of saturated fatty acids is almost 100% diverted by BTE to the production of free medium-chain fatty acids, starving the cells for saturated acyl-ACP substrates for lipid biosynthesis. This results in drastic changes in membrane lipid composition from predominantly 16:0 to 18:1. The continued hydrolysis of medium-chain ACPs by the BTE causes the bacterial fatty acid synthase to produce fatty acids even when membrane production has ceased in stationary phase, which shows that the fatty acid synthesis rate can be uncoupled from phospholipid biosynthesis and suggests that acyl-ACP intermediates might normally act as feedback inhibitors for fatty acid synthase. As the fatty acid synthesis is increasingly diverted to medium chains with the onset of stationary phase, the rate of C12 production increases relative to C14 production. This observation is consistent with activity of the BTE on free acyl-ACP pools, as opposed to its interaction with fatty acid synthase-bound substrates.  相似文献   

8.
Strains of Escherichia coli carrying mutations at the relA locus are deficient in cyclopropane fatty acid (CFA) synthesis, a phospholipid modification that occurs as cultures enter stationary phase. RelA protein catalyzes the synthesis of guanosine-3′,5′-bisdiphosphate (ppGpp); therefore, ppGpp was a putative direct regulator of CFA synthesis. The nucleotide could act by increasing either the activity or the amount of CFA synthase, the enzyme catalyzing the lipid modification. We report that the effect of RelA on CFA synthesis is indirect. In vitro and in vivo experiments show no direct interaction between ppGpp and CFA synthase activity. The relA effect is due to ppGpp-engendered stimulation of the synthesis of the alternative sigma factor, RpoS, which is required for function of one of the two promoters responsible for expression of CFA synthase.  相似文献   

9.
Fatty-acid biosynthesis by a branched-chain alpha-keto acid dehydrogenase (bkd) mutant of Streptomyces avermitilis was analyzed. This mutant is unable to produce the appropriate precursors of branched-chain fatty acid (BCFA) biosynthesis, but unlike the comparable Bacillus subtilis mutant, was shown not to have an obligate growth requirement for these precursors. The bkd mutant produced only straight-chain fatty acids (SCFAs) with membrane fluidity provided entirely by unsaturated fatty acids (UFAs), the levels of which increased dramatically compared to the wild-type strain. The levels of UFAs increased in both the wild-type and bkd mutant strains as the growth temperature was lowered from 37 degrees C to 24 degrees C, suggesting that a regulatory mechanism exists to alter the proportion of UFAs in response either to a loss of BCFA biosynthesis, or a decreased growth temperature. No evidence of a regulatory mechanism for BCFAs was observed, as the types of these fatty acids, which contribute significantly to membrane fluidity, did not alter when the wild-type S. avermitilis was grown at different temperatures. The principal UFA produced by S. avermitilis was shown to be delta 9-hexadecenoate, the same fatty acid produced by Escherichia coli. This observation, and the inability of S. avermitilis to convert exogenous labeled palmitate to the corresponding UFA, was shown to be consistent with an anaerobic pathway for UFA biosynthesis. Incorporation studies with the S. avermitilis bkd mutant demonstrated that the fatty acid synthase has a remarkably broad substrate specificity and is able to process a wide range of exogenous branched chain carboxylic acids into unusual BCFAs.  相似文献   

10.
脂肪酸不仅是细菌细胞膜组分,还是许多生物活性物质的合成原料。不饱和脂肪酸(unsaturated fatty acid, UFA)具有更低的相变温度,是细菌调节细胞膜流动性的重要分子,因此UFA合成途径是重要的抗菌药物筛选靶点。细菌可利用厌氧途径合成UFA,其中模式生物大肠杆菌利用经典的FabA-FabB途径合成UFA,但不同细菌中UFA合成的厌氧途径具有多样性,相关催化酶类也不尽相同;细菌还可以利用需氧途径合成UFA,利用脂肪酸脱饱和酶直接将饱和脂肪酸(saturated fatty acid, SFA)转化为不饱和脂肪酸,而不同脱饱和酶会生成不同结构的UFA,在逆境耐受、致病力等多方面发挥重要作用;细菌还可以利用单加氧酶,将脂肪酸合成途径中癸酰酰基载体蛋白(acyl carrier protein, ACP)转化为顺-3-癸烯酰ACP,并最终合成UFA。细菌脂肪酸合成相关的其他酶类在UFA合成或不同种类UFA调节中也发挥着重要作用。本文系统地总结了细菌UFA合成途径与相关酶类的多样性研究进展,旨在为进一步了解细菌UFA合成机制,并以此为靶点开发抗菌药物等方面提供理论支撑。  相似文献   

11.
Dietary polyunsaturated fatty acids (PUFA) play a key role in regulating delta-6 desaturase (D6D), the key enzyme for long-chain PUFA biosynthesis. Nevertheless, the extent of their effects on this enzyme remains controversial and difficult to assess. It has been generally admitted that C18 unsaturated fatty acids (UFAs) regulate negatively delta-6 desaturase (D6D). This inhibition has been evidenced in regard to a high glucose/fat free (HG/FF) diet used in reference. However, several nutritional investigations did not evidence any inhibition of desaturases when feeding fatty acids.Because the choice of the basal diet appeared to be of primary importance in such experiments, our goal was to reconsider the specific role of dietary UFAs on D6D regulation, depending on nutritional conditions. For that, sixteen adult Wistar rats were fed purified linoleic acid, α-linolenic acid or oleic acid, included in one of two diets at 4% by weight: an HG/FF or a high starch base (HS) where the pure UFAs replaced a mixed vegetable oil. Our results showed first that D6D specific activity was significantly greater when measured in presence of an HG/FF than with an HS/4% vegetable oil diet. Secondly, we found that linoleic and alpha-linolenic acids added to HG/FF reduced the specific activity of D6D. In contrast, when pure UFAs were added to an HS base, D6D specific activities remained unchanged or increased. Concordant results were obtained on D6D mRNA expression.Altogether, this study evidenced the importance of the nutritional status in D6D regulation by C18 UFAs: when used as control, HG/FF diet stimulates D6D compared with a standard control diet containing starch and 4% fats, leading to an overestimation of the D6D regulation by UFAs. Then, UFAs should be considered as repressors for unsaturated fatty acid biosynthesis only in very specific nutritional conditions.  相似文献   

12.
P Jiang  J E Cronan  Jr 《Journal of bacteriology》1994,176(10):2814-2821
The effects of inhibition of Escherichia coli phospholipid synthesis on the accumulation of intermediates of the fatty acid synthetic pathway have been previously investigated with conflicting results. We report construction of an E. coli strain that allows valid [14C]acetate labeling of fatty acids under these conditions. In this strain, acetate is a specific precursor of fatty acid synthesis and the intracellular acetate pools are not altered by blockage of phospholipid synthesis. By use of this strain, we show that significant pools of fatty acid synthetic intermediates and free fatty acids accumulate during inhibition of phospholipid synthesis and that the rate of synthesis of these intermediates is 10 to 20% of the rate at which fatty acids are synthesized during normal growth. Free fatty acids of abnormal chain length (e.g., cis-13-eicosenoic acid) were found to accumulate in glycerol-starved cultures. Analysis of extracts of [35S]methionine-labeled cells showed that glycerol starvation resulted in the accumulation of several long-chain acyl-acyl carrier protein (ACP) species, with the major species being ACP acylated with cis-13-eicosenoic acid. Upon the restoration of phospholipid biosynthesis, the abnormally long-chain acyl-ACPs decreased, consistent with transfer of the acyl groups to phospholipid. The introduction of multicopy plasmids that greatly overproduced either E. coli thioesterase I or E. coli thioesterase II fully relieved the inhibition of fatty acid synthesis seen upon glycerol starvation, whereas overexpression of ACP had no effect. Thioesterase I overproduction also resulted in disappearance of the long-chain acyl-ACP species. The release of inhibition by thiosterase overproduction, together with the correlation between the inhibition of fatty acid synthesis and the presence of abnormally long-chain acyl-ACPs, suggests with that these acyl-ACP species may act as feedback inhibitors of a key fatty acid synthetic enzyme(s).  相似文献   

13.
In Pseudomonas putida, as in many other eubacteria, cyclopropane fatty acids (CFAs) accumulate in the membrane during the stationary phase of growth. Here, we show that cfaB gene expression in P. putida KT2440 is dependent on the RpoS sigma factor that recognizes the sequence 5'-CTACTCT-3' between -8 and -14. We have carried out a mutational study of the cfa promoter and have determined that positions -9, -12, -13 and -14 are the most critical for maximal activity. In P. putida, the substrates of the CFA synthase, cis-unsaturated fatty acids (cis-UFAs), are also substrates for another stress-related enzyme, the cis-trans isomerase (CTI). Despite using the same substrates, we have found that the activity of the CTI is not limited by the CFA synthase activity and vice versa. For instance, in a cfaB knockout mutant, the amount of trans-UFAs synthesized after a specific stress was no higher than in the parental background despite the fact that there are more cis-UFAs available to be used by the CTI as substrates. In this regard, in a cti-deficient mutant background, the levels of CFAs were similar to those in the parental one under the same conditions.  相似文献   

14.
15.
H T Truong  E A Pratt  C Ho 《Biochemistry》1991,30(16):3893-3898
The interaction with phospholipid vesicles of the membrane-bound respiratory enzyme D-lactate dehydrogenase of Escherichia coli has been studied. Proteolytic digestion studies show that D-lactate dehydrogenase is protected from trypsin digestion to a larger extent when it interacts with phosphatidylglycerol than with phosphatidylcholine vesicles. Wild-type D-lactate dehydrogenase and mutants in which an additional tryptophan is substituted in selected areas by site-specific oligonucleotide-directed mutagenesis have been labeled with 5-fluorotryptophan. 19F nuclear magnetic resonance studies of the interaction of these labeled enzymes with small unilamellar phospholipid vesicles show that Trp 243, 340, and 361 are exposed to the lipid phase, while Trp 384, 407, and 567 are accessible to the external aqueous phase. Reconstitution of enzymatic activity in phospholipid vesicles has been studied by adding enzyme and substrate to phospholipid vesicles containing a spin-labeled fatty acid as an electron acceptor. The reduction of the doxyl group of the spin-labeled fatty acid has been monitored indirectly by nuclear magnetic resonance and directly by electron paramagnetic resonance. These results indicate that an artificial electron-transfer system can be created by mixing D-lactate dehydrogenase and D-lactate together with phospholipid vesicles containing spin-labeled fatty acids.  相似文献   

16.
Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions delta5, delta7, and delta9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the delta5 position, regardless of the growth temperature and the length chain of the fatty acids.  相似文献   

17.
The biochemical basis for the inhibition of fatty acid biosynthesis in Escherichia coli by the antibiotic thiolactomycin was investigated. A biochemical assay was developed to measure acetoacetyl-acyl carrier protein (ACP) synthase activity, a recently discovered third condensing enzyme from E. coli (Jackowski, S., and Rock, C.O. (1987) J. Biol. Chem. 262, 7927-7931). In contrast to the other two condensing enzymes in E. coli, acetoacetyl-ACP synthase (synthase III) condensed malonyl-ACP with acetyl-CoA, rather than with acetyl-ACP. The concentration dependence of thiolactomycin inhibition of fatty acid biosynthesis in vivo was the same as the inhibition of acetoacetyl-ACP synthase activity in vitro indicating that the two phenomena were related. A thiolactomycin-resistant mutant (strain CDM5) was isolated. The specific activity of acetoacetyl-ACP synthase in extracts from this mutant was 10-fold lower than in extracts from its thiolactomycin-sensitive parent resulting in a marked defect in the ability of strain CDM5 to incorporate acetyl-CoA into fatty acids in vitro. The residual acetoacetyl-ACP synthase activity in the resistant strain was refractory to thiolactomycin inhibition. In addition, acetyl-CoA:ACP transacylase activity in strain CDM5 was resistant to inactivation by thiolactomycin suggesting that the acetoacetyl-ACP synthase also catalyzes this transacylation reaction. These data point to acetoacetyl-ACP synthase as a target for thiolactomycin inhibition of bacterial fatty acid biosynthesis.  相似文献   

18.
We investigated the fatty acid compositions of phospholipids in Drosophila melanogaster lines showing rapid (CR), intermediate (CTL), or slow (CS) recovery from chill coma, which were established by artificial selection or by free recombination without selection. Compared to CTL, CS showed a low composition of dienoic acids and a small number of double bonds in the fatty acids. The ratio of unsaturated fatty acids and saturated fatty acids (UFAs/SFAs) was significantly lower in CS than in CTL. CR had higher monoenoic acid composition and lower dienoic acid composition than CTL. In addition, the amount of SFAs was lower and therefore the UFAs/SFAs ratio considerably higher in CR than in CTL. These changes in phospholipid fatty acids probably contributed to losing and maintaining the homeoviscosity of the cellular membranes in CS and CR, respectively, at low temperature and therefore produced their distinct phenotypes in recovery from chill coma.  相似文献   

19.
《Biotechnology advances》2019,37(8):107454
Conjugated fatty acids (CFAs) have received a deal of attention due to the increasing understanding of their beneficial physiological effects, especially the anti-cancer effects and metabolism-regulation activities. However, the production of CFAs is generally difficult. Several challenges are the low CFAs content in natural sources, the difficulty to chemically synthesize target CFA isomers in high purity, and the sensitive characteristics of CFAs. In this article, the current technologies to produce CFAs, including physical, chemical, and biotechnical approaches were summarized, with a focus on the conjugated linoleic acids (CLAs) and conjugated linolenic acids (CLNAs) which are the most common investigated CFAs. CFAs usually demonstrate stronger physiological effects than other non-conjugated fatty acids; however, they are more sensitive to heat and oxidation. Consequently, the quality control throughout the entire production process of CFAs is significant. Special attention was given to the micro- or nano-encapsulation which presented as an emerging technique to improve the bioavailability and storage stability of CFAs. The current applications of CFAs and the potential research directions were also discussed.  相似文献   

20.
Stearic acids with a nitroxide radical at selected positions have been incorporated in the phospholipid bilayers of clathrin coated vesicles, uncoated vesicles and sonicated liposomes made from the lipids extracted from the uncoated vesicles. The extent of incorporation was found minimum for stearic acids labeled on C-12 and for bilayers of uncoated vesicles. The ESR spectra of the spin-labeled fatty acids incorporated in the bilayers showed a pronounced temperature dependence (without discontinuity) and a decrease in the hyperfine splitting as the nitroxide group was inserted deeper in the hydrophobic core of the membranes. An abrupt phospholipid phase transition or a phase separation could be excluded. The presence of the external proteins (the clathrin coat) on the membranes was not found to noticeably influence the gradient of flexibility of the fatty acid chains of the phospholipids. The influence of the internal proteins embedded in the bilayers was evidenced by a detailed analysis of the ESR spectra of (7,8)SA in terms of two components: one component arising from the labels surrounded exclusively by phospholipids, the other component arising from labels of reduced mobility perturbed by the vicinity of the proteins. These results support the persistence of lipidic domains in the endocytic vesicles despite the accumulation of receptors which follows their formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号