共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
Because tunas possess countercurrent vascular pathways servingthe trunk musculature, metabolic heat is retained, and muscletemperatures can considerably exceed that of the surroundingwater (+1° to +21°C). And because tunas have this excess,it is reasonable to suppose they have some means of controllingits magnitude. Tunas must contend with two exigencies whichcan perturb body temperature: changes in water temperature and,in contrast to non-thermoconserving fish, changes in activity.Both can be met by adaptive change in excess muscle temperature.If this could be accomplished in the absence of changes in environmentaltemperature or activity level, this would constitute physiologicalthermoregulation. If excess muscle temperature cannot be alteredsufficiently to acceptable levels, more favorable environmentaltemperatures must be sought or activity levels changed. We wouldconsider this behavioral thermoregulation. High sustained swimspeeds, characteristic of the continuously swimming tunas, requirespecial consideration. Heat production is proportional to approximatelythe cube of swim speed. In order to maintain a slight temperatureexcess at basal swim speeds (12 lengths/sec), and yetnot overheat during sustained high speed swimming (>4 lengths/sec),mechanisms are required to conserve heat under the former conditionsand to dissipate it effectively under the latter. In this report,we review published observations other investigators have interpretedas physiological thermoregulation in tunas, describe recentfindings in our laboratory, and suggest some possible thermoregulatorymechanisms. 相似文献
6.
7.
Monson C. B.; Patterson S. L.; Horowitz J. M.; Oyama J. 《Journal of applied physiology》1989,67(1):383-389
To determine the effect of hypergravity acclimation on thermoregulation, core temperature (Tc), tail temperature (Tt), and O2 consumption (VO2) were measured in control rats (raised at 1 G) and in rats acclimated to 2.1 G. When the animals were exposed to a low ambient temperature of 9 degrees C, concurrently with a hypergravic field of 2.1 G, Tc of rats raised at 1 G fell markedly by approximately 6 degrees C (to 30.8 +/- 0.6 degrees C) while that of the rats raised at 2.1 G remained relatively constant (falling only approximately 1 degree C to 36.4 +/- 0.3 degrees C). Thus prior acclimation to a 2.1-G field enabled rats to maintain Tc when cold exposed in a 2.1-G field. To maintain Tc, thermogenic mechanisms were successfully activated in the 2.1-G-acclimated rats as shown by measurements of VO2. In contrast, VO2 measurements showed that rats reared at 1 G and then cold exposed at 2.1 G did not activate thermogenic mechanisms sufficiently to prevent a fall in Tc. In other experiments, rats acclimated to either 1 or 2.1 G were found to lack the ability to maintain their Tc when exposed to a 5.8-G field or when exposed to prolonged cold exposure at 1 G. Results are interpreted as showing that when placed in a 2.1-G field, rats acclimated to 2.1 G can more closely maintain their Tc near 37 degrees C when cold exposed than can rats acclimated to 1 G. However, this enhanced regulatory ability of 2.1-G-acclimated rats over 1.0-G-acclimated rats is restricted to 2.1-G fields and is not observed in 1.0- and 5.8-G fields. 相似文献
8.
K. Cena 《International journal of biometeorology》1964,8(1):57-60
Measurements of the sub-lingual temperature and of the skin temperature of the nose, ears, neck, dewlap, sides and back of two hippopotami (HIPPOPOTAMUS AMPHIBIUS L.) in the Zoological Park at Wroclaw have been made. The mean sub-lingual temperature was 36.1C but a diurnal rhythm of sub-lingual temperature was evident, which was not related to changes in the environmental temperature. The skin temperatures varied with the environmental temperature. When the animals were immersed in water at 9C the sub-lingual temperature dropped to 24.5C but it had returned to its pre-immersion value within one hour of leaving the water.
Zusammenfassung Es wurden Messungen der Sublingualtemperatur und der Temperatur der Haut an Nase, Ohren, Nacken, Wamme, Seiten und Rücken von 2 Hippopotamus (HIPPOPOTAMUS AMPHIBUUS L.) im Zoologischen Garten in Warschau vorgenommen. Die mittl. Sublingualtemperatur war 36.1C. Ein diurnaler Rhythmus ohne Beziehung zu den Änderungen der Umwelttemperatur konnte nachgewiesen werden. Die Hauttemperatur Änderte sichmit der Umwelttemperatur. Wenn die Tiere im Wasserbecken (9C) standen,fiel die Sublingualtemperatur auf 24,5C. Sie stieg nach Verlassen des Wassers innerhalb einer Stunde auf den Ausgangswert.
Resume La température sublinguale ainsi que les températures cutanées du nez,de l'oreille, de la nuque, du ventre, des flancs et du dos ont été relevées chez deux hippopotamus (HIPPOPOTAMUS AMPHIBIUS L.) du Jardin Zoologique de Varsovie. La température sublinguale moyenne a été de 36,1C. L'existence d'un rythme nycthéméral indépendant des variations de la température ambiante a été observée.La température cutanée varie en fonction de la température ambiante.Quand les animaux se tenaient debout dans leur bassin d'eau froide à 9C, la température sublinguale tombait à 24,5C.Lorsque les animaux quittaient ce bassin, cette température remontait au bout d'environ b heure à sa valeur de départ.相似文献
9.
Dr. J. Ishay F. Ruttner 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1971,72(4):423-434
Zusammenfassung Im Nest von Vespa crabro wird im Bereich der Puppen von den weiblichen Imagines (Arbeiterinnen und Königinnen) eine sehr konstante Temperatur von 30,0° C aufrecht erhalten. Zwischen Larvenzellen sind die Tagesschwankungen größer, die Durchschnittstemperatur um 0,4° C niedriger. Die Larven werden von den Imagines nicht gewärmt.In Nestern ohne Imagines läßt sich eine autonome Temperaturregulation durch die Larven nachweisen. Die thermoregulatorischen Bewegungen der Larven werden beschrieben und von den als Hungersignale zu wertenden Bettelbewegungen abgegrenzt.Weibliche Imagines wärmen ältere, pigmentierte Puppen auch außerhalb des Nestes. Dieses Verhalten wird vermutlich durch ein Pheromon ausgelöst. Es werden die Unterschiede in der Thermoregulation gegenüber den Honigbienen und V. orientalis diskutiert.
Der Stiftung Volkswagenwerk sind wir für die Förderung dieser Arbeit zu Dank verpflichtet. 相似文献
Thermoregulation in the nests of hornets
Summary In the nest of Vespa crabro, a very constant temperature of 30° C is maintained by female adults (workers and queens) in the vicinity of pupae. Daily temperature variation between larval cells on the other hand is larger and the average temperature about 0,4° C lower. Larvae are not warmed by the adults.Larvae in nests without adults exhibit an autonomous temperature regulation. In this paper the thermoregulatory movements of larvae are described and distinguished from those normally described as hunger signals and begging movements.Female adults warm older pigmented pupa, even when outside the nest. This behavior is probably stimulated by a pheromone.Differences in thermoregulation are discussed and are contrasted with those of the honey bee and V. orientalis.
Der Stiftung Volkswagenwerk sind wir für die Förderung dieser Arbeit zu Dank verpflichtet. 相似文献
10.
NIGEL R. FRANKS 《Physiological Entomology》1989,14(4):397-404
ABSTRACT. The temporary nests (bivouacs), of Eciton burchelli (Westwood) thermoregulate with considerable precision. Temperatures at the core of the bivouac are maintained at 28.5±1C even though ambient temperatures in their tropical rainforest home change during the day over a range of 7C. Temperatures just under the mantle of the bivouac vary much more than at the core. Calculations suggest that the basal metabolic rate of the army ants in bivouac will generate all the heat that they need to keep warm when ambient temperatures drop. The army ants probably regulate heat loss by opening up ventilation channels within the nest. 相似文献
11.
12.
13.
Thermoregulation in swimmers and runners 总被引:1,自引:0,他引:1
14.
A. F. Davydov 《Journal of Evolutionary Biochemistry and Physiology》2004,40(3):241-249
This review deals with analysis of current experimental data obtained predominantly by foreign authors on energetics and thermoregulation in many species of the Chiroptera order in connection with their circadian and seasonal hypometabolism due to the habitation temperature conditions, type of nutrition, reproduction, and flying activity. 相似文献
15.
16.
17.
Significance of Skewness in Ectotherm Thermoregulation 总被引:1,自引:1,他引:0
18.
19.
行为热调节是外温动物体温调节的主要方式。传统观点认为行为热调节仅存在于胚后阶段,然而近年来研究表明爬行动物胚胎具备行为热调节能力。本文回顾了爬行动物胚胎行为热调节的发现和研究进展,探讨了胚胎行为热调节的生态适应意义,分析了胚胎如何感知温度以完成行为热调节,指出了该领域的未来研究方向。 相似文献
20.
Weathers WW Gerhart KL Hodum PJ 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2000,170(8):561-572
We measured resting metabolic rates at air temperatures between ca. −5 and 30 °C in snow petrels (Pagodroma nivea), cape petrels (Daption capense), Antarctic petrels (Thalassoica antarctica), and Antarctic fulmars (Fulmarus glacialoides). We measured seven age classes for each species: adults, and nestlings that were 3, 8, 15, 28, 35, and 42 days old. Basal
metabolic rate (BMR) and thermal conductance (C) of adults averaged, respectively, 140% and 100% of values predicted allometrically
for nonpasserine birds. Minimum metabolic rates of unfasted nestlings aged 15–42 days averaged, respectively, 97% and 98%
of predicted adult BMR in Antarctic petrels and snow petrels, versus 119% and 126% of predicted in Antarctic fulmars and cape
petrels. Nestlings of the southerly breeding snow petrel and Antarctic petrel were relatively well insulated compared with
nestlings of other high-latitude seabirds. Adult lower critical temperature (Tlc) was inversely related to body mass and averaged 9 °C lower than predicted allometrically. As nestlings grew, their Tlc decreased with increasing body mass from ca. 14 to 22 °C (depending upon species) at 3 days of age, to −4 to 8 °C when nestlings
attained peak mass. Nestling Tlc subsequently increased as body mass decreased during pre-fledging weight recession. Nestling Tlc was close to mean air temperature from the end of brooding until fledging in the three surface nesting species.
Accepted: 12 July 2000 相似文献