首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Episomal plasmids (p8901) with minigenes coding for the influenza virus matrix peptide amino acids 57-68 (KGILGFVFTLTV; referred to as M57-68) or coding for a modified peptide were introduced into HLA-A2-positive target cells. The association of these peptides, synthesized in the cytoplasm, with HLA-A2 and the expression of this complex at the cell surface was evaluated with HLA-A2-restricted CTL specific for the influenza virus matrix peptide M57-68. Cells expressing M57-68 were lysed effectively, as were cells expressing a peptide that retained residues 60-64 with seven flanking alanine residues (AAALGFVFAAAA). An exogenously added synthetic analog of peptide M57-68 that inhibited sensitization of targets with synthetic peptide M57-68 also inhibited lysis of cells expressing the minigene coding for the peptide with seven alanine substitutions. These results demonstrate the utility of minigene DNA constructs in creating experimental systems to develop agents to diminish the severity of CTL-mediated tissue damage in autoimmune diseases and graft rejection.  相似文献   

2.
HLA-A2.1-associated peptides, extracted from human melanoma cells, were used to study epitopes for melanoma-specific HLA-A2.1-restricted cytotoxic T lymphocytes (CTLs) by epitope reconstitution, active peptide sequence characterization and synthetic peptide verification. CTL were generated from tumor-involved nodes by in vitro stimulation, initially with autologous melanoma cells and subsequently with allogeneic HLA-A2.1 positive melanoma cells. The CTLs could lyse autologous and aUogeneic HLA-A2. 1 positive melanomas, but not HLA-A2.1 negative melanomas or HLA-A2.1 positive non-melanomas. The lysis of melanomas could be inhibited by anti-CD3, anti-HLA class I and anti-HLA-A2.1 monoclonal antibodies. HLA-A2.1 molecules were purified from detergent-solubilized human melanoma cells by immunoaffinity column chromatography and further fractionated by reversed phase high performance liquid chromatography. The fractions were assessed for their ability to reconstitute melanoma-specific epitopes with HLA-A2.1 positive antigen-processing mutant T2 cells. Three reconstitution peaks were observed in lactate dehydrogenase release assay. Mass spectrometry and ion-exchange high performance liquid chromatography analysis were used to identify peptide epitopes. Peptides with a mass-to-charge ratio of 948 usually consist of nine amino acid residues. The data from reconstitution experiments confirmed that the synthetic peptides contained epitopes and that the peptides associated with HLA-A2.1 and recognized by melanoma-specific CTL were present in these different melanoma cells. These peptides could be potentially exploited in novel peptide-based antitumor vaccines in immunotherapy for CTL.  相似文献   

3.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

4.
We have studied Ags recognized by HLA class I-restricted CTLs established from tumor site to better understand the molecular basis of tumor immunology. HLA-A24-restricted and tumor-specific CTLs established from T cells infiltrating into lung adenocarcinoma recognized the two antigenic peptides encoded by a cyclophilin B gene, a family of genes for cyclophilins involved in T cell activation. These two cyclophilin B peptides at positions 84-92 and 91-99 induced HLA-A24-restricted CTL activity against tumor cells in PBMCs of leukemia patients, but not in epithelial cancer patients or in healthy donors. In contrast, the modified peptides at position 2 from phenylalanine to tyrosine, which had more than 10 times higher binding affinities to HLA-A24 molecules, could induce HLA-A24-restricted CTL activity against tumor cells in PBMCs from leukemia patients, epithelial cancer patients, or healthy donors. PHA-activated normal T cells were resistant to lysis by the CTL line or by these peptide-induced CTLs. These results indicate that a cyclophilin B gene encodes antigenic epitopes recognized by CTLs at the tumor site, although T cells in peripheral blood (except for those from leukemia patients) are immunologically tolerant to the cyclophilin B. These peptides might be applicable for use in specific immunotherapy of leukemia patients or that of epithelial cancer patients.  相似文献   

5.
Expression of NY-ESO-1 in a high proportion of different human tumors makes this protein a very attractive vaccine target. NY-ESO-1 peptides, recognized by HLA-A2-restricted CTL, have recently been described. However, it remains unclear how efficiently tumors generate these epitopes, and whether peptide analogues can be used for optimal expansion and activation of NY-ESO-1-specific HLA-A2-restricted CTL. By generating unique CTL clones, we demonstrate that NY-ESO-1-positive tumor cells are efficiently killed by HLA-A2-restricted CTL specific for the peptide epitope NY-ESO-1 157-165. Presentation of this epitope is not affected by the presence or absence of the proteasome subunits low molecular proteins 2 and 7 and is not blocked by proteasome inhibitors, while it is impaired in the TAP-deficient cell line LBL 721.174. NY-ESO-1 157-165 peptide analogues were compared for their antigenicity and immunogenicity using PBL from melanoma patients. Three peptides, containing the carboxyl-terminal cysteine substituted for either valine, isoleucine, or leucine, were recognized at least 100 times more efficiently than the wild-type peptide by specific CTL. Peptide analogues were capable of stimulating the expansion of NY-ESO-1-specific CTL from PBL of melanoma patients much more efficiently than wild-type peptide. These findings define the processing requirements for the generation of the NY-ESO-1 157-165 epitope. Identification of highly antigenic NY-ESO-1 peptide analogues may be important for the development of vaccines capable of expanding NY-ESO-1-specific CTL in cancer patients.  相似文献   

6.
7.
Specificity of peptide binding by the HLA-A2.1 molecule   总被引:6,自引:0,他引:6  
The HLA-A2 molecule contains a putative peptide binding site that is bounded by two alpha-helices and a beta-pleated sheet floor. Previous studies have demonstrated that the influenza virus matrix peptide M1 55-73 can sensitize target cells for lysis by HLA-A2.1-restricted virus-immune CTL and can induce CTL that can lyse virus-infected target cells. To assess the specificity of peptide binding by the HLA-A2.1 molecule, we examined the ability of seven variant M1 peptides to be recognized by a panel of M1 55-73 peptide-specific HLA-A2.1-restricted CTL lines. The results demonstrate that five out of the seven variant M1 55-73 peptides could be recognized by A2.1-restricted M1 55-73 peptide-specific CTL lines. The two variant peptides that were not recognized by any CTL could bind to HLA-A2.1 as indicated by their ability to compete for presentation of the M1 55-73 peptide. In addition, 5 of a panel of 24 unrelated peptides tested could also compete for M1 55-73 presentation by HLA-A2.1. One peptide derived from the sequence of a rotavirus protein could sensitize HLA-A2.1+ targets for lysis by M1 55-73 peptide-specific CTL. We conclude from these studies that: 1) the HLA-A2.1 molecule can bind a broad spectrum of peptides; 2) T cells selected for the ability to recognize one peptide plus a class I molecule can actually recognize an unrelated peptide presented by that same class I molecule; and 3) a stretch of three adjacent hydrophobic amino acids may be an important common feature of peptides that can bind to HLA-A2.1.  相似文献   

8.
Background Hepatitis C virus (HCV) frequently causes chronic hepatitis, cirrhosis, and hepatocellular carcinoma after long-term persistent infection. Among various genotypes of HCV, HCV1b is resistant to standard interferon therapy, and thus the development of new treatment modality is needed. Results To provide a scientific basis for specific immunotherapy for HCV1b, we investigated HCV1b-derived epitope peptides recognized by human leukocyte antigen (HLA)-A11, -A31, or -A33-restricted cytotoxic T-lymphocytes (CTLs), and report here three novel vaccine candidate peptides selected by both antibody screening and CTL-inducing capacity from among 46 peptides of conserved regions of HCV1b sequences with binding motifs to HLA-A11, -A31, and -A33. Significant levels of IgG reactive to each of the three peptides were detected in the plasma of more than 50% of the HCV1b+ patients. One peptide at positions 30–39 of the core protein induced peptide-specific CTLs from peripheral blood mononuclear cells (PBMCs) of HLA-A11+, -A31+, and -A33+ patients. The other two peptides at positions 35–43 of the core protein and at positions 918–926 of the non-structural protein 2 also induced peptide-specific CTLs from the PBMCs of HLA-A11+ and -A33+ patients. Conclusion Therefore, the peptide at positions 30–39 of the core protein could be an appropriate target molecule of specific immunotherapy for all HLA-A11+, -A31+, and -A33+ patients with HCV1b-related diseases.  相似文献   

9.
目的 预测与鉴定烟曲霉抗原Asp f16的HLA-A *0201限制性CD8+细胞毒性T细胞(CTL)抗原表位.方法 以国人常见的HLA-A*0201位点为靶点,依据生物信息学软件扫描烟曲霉特异性抗原Asp f16的全部427个氨基酸序列.使用HLA-A *0201转基因小鼠制备骨髓来源的树突状细胞(DC)和CTL.流式细胞仪技术检测DC表面MHC Ⅱ类抗原,CD80,CD86和CD11c的表达来验证其是否成熟.ELISPOT试验检测烟曲霉抗原多肽特异性CTL产生的细胞因子IFN-γ.四聚体(Tetramer)试验证实烟曲霉特异性CTL与抗原肽,HLA-A*0201分子复合体的亲和性.结果 根据与MHC I类分子结合的半衰期评分,选择了3个HLA-A*0201限制性抗原表位.流式细胞仪分析示成熟DC高表达HLA Ⅱ类抗原,CD80,CD86和CD11c.Tetramer试验证实烟曲霉特异性T细胞受体与抗原肽,HLA-A*0201分子复合体的高亲和性.ELISPOT实验结果 表明烟曲霉抗原肽体外可以活化CD8+CTL,被负载了抗原肽的DC刺激活化后可以产生IFN-γ.结论 本研究成功鉴定烟曲霉抗原Asp f16的HLA-A*0201限制性CD8+CTL表位,可作为疫苗设计的候选表位,为进一步研发新型抗烟曲霉疫苗提供参考.  相似文献   

10.
Identification of immunogenic peptides for the generation of cytotoxic T lymphocytes (CTLs) may lead to the development of novel cellular therapies to treat disease relapse in acute myeloid leukemia (AML) patients. The objective of these studies was to evaluate the ability of unique HLA-A2.1-specific nonameric peptides derived from CD33 antigen to generate AML-specific CTLs ex vivo. We present data here on the identification of an immunogeneic HLA-A2.1-specific CD33(65-73) peptide (AIISGDSPV) that was capable of inducing CTLs targeted to AML cells. The CD33-CTLs displayed HLA-A2.1-restricted cytotoxicity against both mononuclear cells from AML patients and the AML cell line. The peptide- as well as AML cell-specificity of CD33-CTLs was demonstrated and the secretion of IFN-gamma by the CTLs was detected in response to CD33(65-73) peptide stimulation. The cultures contained a distinct CD33(65-73) peptide-tetramer(+)/CD8(+) population. Alteration of the native CD33(65-73) peptide at the first amino acid residue from alanine (A) to tyrosine (Y) enhanced the HLA-A2.1 affinity/stability of the modified CD33 peptide (YIISGDSPV) and induced CTLs with increased cytotoxicity against AML cells. These data therefore demonstrate the potential of using immunogenic HLA-A2.1-specific CD33 peptides in developing a cellular immunotherapy for the treatment of AML patients.  相似文献   

11.
Severe acute respiratory syndrome (SARS) is a highly contagious and life-threatening disease that emerged in China in November 2002. A novel SARS-associated coronavirus was identified as its principal etiologic agent; however, the immunopathogenesis of SARS and the role of special CTLs in virus clearance are still largely uncharacterized. In this study, potential HLA-A*0201-restricted spike (S) and nucleocapsid protein-derived peptides were selected from an online database and screened for potential CTL epitopes by in vitro refolding and T2 cell-stabilization assays. The antigenicity of nine peptides which could refold with HLA-A*0201 molecules was assessed with an IFN-gamma ELISPOT assay to determine the capacity to stimulate CTLs from PBMCs of HLA-A2(+) SARS-recovered donors. A novel HLA-A*0201-restricted decameric epitope P15 (S411-420, KLPDDFMGCV) derived from the S protein was identified and found to localize within the angiotensin-converting enzyme 2 receptor-binding region of the S1 domain. P15 could significantly enhance the expression of HLA-A*0201 molecules on the T2 cell surface, stimulate IFN-gamma-producing CTLs from the PBMCs of former SARS patients, and induce specific CTLs from P15-immunized HLA-A2.1 transgenic mice in vivo. Furthermore, significant P15-specific CTLs were induced from HLA-A2.1-transgenic mice immunized by a DNA vaccine encoding the S protein; suggesting that P15 was a naturally processed epitope. Thus, P15 may be a novel SARS-associated coronavirus-specific CTL epitope and a potential target for characterization of virus control mechanisms and evaluation of candidate SARS vaccines.  相似文献   

12.
Purpose Prostate cancer refractory to hormonal manipulation requires new treatment modalities. In the present study we attempted to identify prostate stem cell antigen (PSCA)-derived peptides immunogenic in HLA-A2+ prostate cancer patients in order to develop peptide-based immunotherapy against hormone-refractory prostate cancer (HRPC).Methods Eleven different PSCA-derived peptides, which were prepared based on the HLA-A2 binding motif, were examined to determine whether they would be recognized by cellular and humoral immune responses in 12 HLA-A2+ patients (11 with HRPC and 1 with non-HRPC).Results Among the PSCA-derived peptides, PSCA 7–15 and PSCA 21–30 peptides effectively induced HLA-A2-restricted peptide-specific and tumor-reactive cytotoxic T lymphocytes (CTLs) from peripheral blood mononuclear cells (PBMCs) of HLA-A2+ patients. The PSCA 21–30 peptide was capable of inducing peptide-specific CTLs in both cancer patients and healthy donors, whereas the PSCA 7–15 peptide was immunogenic in only cancer patients. Immunoglobulin G (IgG) reactive to the PSCA 21–30 peptide was detected in plasma of most patients and healthy donors, whereas IgG reactive to PSCA 7–15 was undetectable in all cases. These results indicate that the former peptide elicits both cellular and humoral immune responses in both patients and healthy donors, whereas the latter elicits only cellular responses in patients.Conclusion These two PSCA peptides should be considered for use in clinical trials of immunotherapy for HLA-A2+ HRPC patients.  相似文献   

13.
Influenza virus matrix protein-derived peptides were synthesized based on the amino acid motifs for HLA-A2 bound self peptides. Among these peptides a nonamer (amino acids 58 through 66: G I L G F V F T L) was found to be 100 to 1000 times more effective than the commonly used peptide 57-68 (K G I L G F V F T L T V) in sensitizing HLA-A2+ target cells to lysis by influenza virus specific cytotoxic T lymphocytes. The sensitizing activity of the 12-mer 57-68 was not due to contamination with shorter and more active peptides. Intracellular expression of peptide 58-66 (mediated by a stable expression plasmid with DNA coding for this peptide) also sensitized HLA-A2+ cells to lysis. Peptide 58-66 stimulated human PBMC to generate CTL that recognized peptides 58-66 and 57-68 in association with HLA-A2.  相似文献   

14.
Fine mapping of human cytotoxic T lymphocyte (CTL) responses against hepatitis C virus (HCV) is based on external loading of target cells with synthetic peptides which are either derived from prediction algorithms or from overlapping peptide libraries. These strategies do not address putative host and viral mechanisms which may alter processing as well as presentation of CTL epitopes. Therefore, the aim of this proof-of-concept study was to identify naturally processed HCV-derived major histocompatibility complex (MHC) class I ligands. To this end, continuous human cell lines were engineered to inducibly express HCV proteins and to constitutively express high levels of functional HLA-A2. These cell lines were recognized in an HLA-A2-restricted manner by HCV-specific CTLs. Ligands eluted from HLA-A2 molecules isolated from large-scale cultures of these cell lines were separated by high performance liquid chromatography and further analyzed by electrospray ionization quadrupole time of flight mass spectrometry (MS)/tandem MS. These analyses allowed the identification of two HLA-A2-restricted epitopes derived from HCV nonstructural proteins (NS) 3 and 5B (NS31406–1415 and NS5B2594–2602). In conclusion, we describe a general strategy that may be useful to investigate HCV pathogenesis and may contribute to the development of preventive and therapeutic vaccines in the future.  相似文献   

15.
CD8(+) T cells are thought to play an important role in protective immunity to tuberculosis. Although several nonprotein ligands have been identified for CD1-restricted CD8(+) CTLs, epitopes for classical MHC class I-restricted CD8(+) T cells, which most likely represent a majority among CD8(+) T cells, have remained ill defined. HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A2/K(b) transgenic mice were shown to provide a powerful model for studying induction of HLA-A*0201-restricted immune responses in vivo. The Ag85 complex, a major component of secreted Mycobacterium tuberculosis proteins, induces strong CD4(+) T cell responses in M. tuberculosis-infected individuals, and protection against tuberculosis in Ag85-DNA-immunized animals. In this study, we demonstrate the presence of HLA class I-restricted, CD8(+) T cells against Ag85B of M. tuberculosis in HLA-A2/K(b) transgenic mice and HLA-A*0201(+) humans. Moreover, two immunodominant Ag85 peptide epitopes for HLA-A*0201-restricted, M. tuberculosis-reactive CD8(+) CTLs were identified. These CD8(+) T cells produced IFN-gamma and TNF-alpha and recognized Ag-pulsed or bacillus Calmette-Guérin-infected, HLA-A*0201-positive, but not HLA-A*0201-negative or uninfected human macrophages. This CTL-mediated killing was blocked by anti-CD8 or anti-HLA class I mAb. Using fluorescent peptide/HLA-A*0201 tetramers, Ag85-specific CD8(+) T cells could be visualized in bacillus Calmette-Guérin-responsive, HLA-A*0201(+) individuals. Collectively, our results demonstrate the presence of HLA class I-restricted CD8(+) CTL against a major Ag of M. tuberculosis and identify Ag85B epitopes that are strongly recognized by HLA-A*0201-restricted CD8(+) T cells in humans and mice. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

16.
Because cytotoxic T lymphocytes (CTLs) play an important role in the specific immunotherapy of hepatitis C virus (HCV) infection, a series of CTL epitopes has been defined from HCV genotype 1a or 1b protein. Here, we attempted to identify HCV2a-derived epitopes that are capable of inducing HLA-A2-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells (PBMCs) of HLA-A2+ HCV2ainfected patients or healthy donors were stimulated in vitro with each of the HCV2a-derived peptides, which were prepared based on the HLA-A2-binding motif, and their peptide-specific and HLA-A2-restricted cytotoxicities were examined. The HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides were found to efficiently induce peptide-specific CTLs from the PBMCs of HLA-A2+ HCV2ainfected patients. Cytotoxicity was mainly mediated by CD8+ T cells in a HLA class I-restricted manner. These results indicate that the HCV2a 432-441, HCV2a 716-724, and HCV2a 2251-2260 peptides might be applicable for peptide-based immunotherapy of HLA-A2+ HCV2a-infected patients.  相似文献   

17.
18.
An influenza B virus nucleoprotein (BNP) peptide, residues 82-94, defined by limited sequence homology with an HLA-A2-restricted peptide from influenza A matrix protein, was recognized by HLA-A2-restricted CTL. Reciprocal inhibition of T cell recognition by the two peptides suggest that the BNP peptide may have lower avidity for HLA-A2 molecules than the matrix peptide. The interaction between this peptide and HLA-A2 was explored by studying the CTL recognition of BNP 82-94 presented by mutant HLA-A2 molecules. Mutations at residues 9, 99, 70, 74, 152 and 156 were found to abolish T cell recognition of the BNP peptide. These results were compared with results previously obtained with the influenza A matrix peptide and suggest that the two peptides bind differently in the peptide binding site.  相似文献   

19.
Recent studies show that the serologically defined HLA-A2 molecule can be subdivided according to functional and biochemical characteristics. By the use of various HLA-A2-specific cytotoxic T lymphocytes (CTLs) and isoelectric focusing, the serologically homogeneous HLA-A2 molecule can be divided into four subtypes. The polymorphism of the serologically defined HLA-A2 molecule has also been demonstrated by the use of HLA-A2-restricted CTLs. This study was designed to analyze the functional epitopes on different HLA-A2 molecules with special regard to the recognition patterns of different types of HLA-A2-restricted CTLs directed against minor histocompatibility (minor H) antigens. Fifteen so-called HLA-A2 variants belonging to distinct HLA-A2 subtypes were tested as target cells in the cell-mediated lympholysis (CML) assay against (1) HLA-A2-restricted antiminor H-Y CTLs, (2) HLA-A2 and -B7-restricted antiminor H-Y CTLs, and (3) HLA-A2, -Bw62 and -B27-restricted antiminor HA CTLs. We found that those three CTLs recognized only one of those HLA-A2 variants. Furthermore, positive reactions by the antiminor H CTLs were only observed on those variant cells which carried, in addition to the HLA-A2 variant, either another normal HLA-A2 molecule or another required restricting class I molecule necessary for associative recognition. These results indicate that the absence of HLA-A2 normal allotypic target determinant(s) leads to the loss of epitope(s) necessary for recognition of minor H-Y and minor HA transplantation antigens by HLA-restricted CTLs. We can conclude from the present study that HLA-A2-restricted antiminor H CTLs use, in general, the same epitope (or cluster of epitopes) for cellular recognition as alloimmune HLA-A2-specific CTLs.  相似文献   

20.
Malignant pleural mesothelioma (MPM) is an aggressive cancer, with survival of less than one year following diagnosis and treatment with current protocols. Recent studies have demonstrated the presence of the simian virus 40 (SV40)-like, large tumor antigen (Tag) in nearly 60% of MPMs. SV40 Tag is a viral-encoded tumor-specific antigen, and thus a potential target for the induction of anti-tumor immunity and the development of therapeutic vaccines. We describe here evidence for the existence of SV40 Tag-specific immune responses in patients with MPM whose tumors express Tag. Humoral immunity was demonstrated by the detection of IgG titers against Tag in serum samples from 1/3 of patients examined. CTLs were generated from the peripheral blood of an HLA-A2(+) MPM patient with a synthetic peptide representing an HLA-A2 binding epitope in SV40 Tag. The CTLs demonstrated epitope fine specificity, in that other peptides from SV40 Tag and a peptide from influenza virus were not recognized in the context of HLA-A2. Moreover, the CTLs were capable of recognizing mesothelioma tumor cells that expressed SV40 Tag, in an MHC class I restricted manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号