首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sesquiterpene cyclase, patchoulol synthase, from Pogostemon cablin (patchouli) leaves was purified to apparent homogeneity by chromatofocusing, anion exchange, gel permeation, and hydroxylapatite chromatography. The enzyme showed a maximum specific activity of about 20 nmol/min/mg protein, and a native molecular weight of 80,000 as determined by gel permeation chromatography. The protein was very hydrophobic, as judged by chromatographic behavior on several matrices, and possessed a pI value of about 5.0, as determined by isoelectric and chromatofocusing. SDS-PAGE showed the enzyme to be composed of two apparently identical subunits of Mr approximately 40,000. Maximum activity was observed at pH 6.7 in the presence of Mg2+ (Km approximately 1.7 mM); other divalent metal ions were ineffective in promoting catalysis. The Km value for the substrate, farnesyl pyrophosphate, was 6.8 microM. Patchoulol synthase copurified with the ability to transform farnesyl pyrophosphate to cyclic olefins (alpha- and beta-patchoulene, alpha-bulnesene, and alpha-guiaene) and this observation, plus evidence based on differential inhibition and inactivation studies, suggested that these structurally related products are synthesized by the same cyclase enzyme. In general properties, the patchoulol synthase from patchouli leaves resembles fungal sesquiterpene olefin cyclases except for the ability to synthesize multiple products, a property more typical of monoterpene cyclases of higher plant origin.  相似文献   

2.
The major wound-inducible monoterpene synthase (cyclase) of grand fir (Abies grandis) stems transforms geranyl pyrophosphate to both (-)-alpha-pinene (40%) and (-)-beta-pinene (60%). The enzyme was purified to apparent homogeneity by anion-exchange and hydrophobic interaction chromatography, coupled to discontinuous native polyacrylamide gel electrophoresis at neutral pH and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (also at neutral pH) followed by renaturation in 1% Tween 20 (polyoxyethylenesorbitan monolaurate). The renatured enzyme produced a mixture of isomeric pinenes from geranyl pyrophosphate identical to that generated by the native form. The protein exhibited a molecular weight of 63,000 by gel permeation chromatography and of 62,000 by denaturing gel electrophoresis, indicating that the monomer is active. The enzyme required Mn2+ (Km = 30 microM) for activity, exhibited a Km value of 6 microM for the substrate geranyl pyrophosphate, showed a pH optimum at 7.8 and temperature optimum at 42 degrees C, and was inhibited by pyrophosphate (I50 = 0.17 mM), orthophosphate (I50 = 51 mM), and alpha-pinene, as well as by the histidine-directed reagent diethylpyrocarbonate (I50 = 0.64 mM) and the cysteine-directed reagent p-hydroxymercuribenzoate (I50 = 1.9 microM). Although similar in many respects to constitutive monoterpene cyclases of herbaceous species, this inducible cyclase, the first enzyme of this type to be purified to homogeneity from a conifer, is distinguished by the relatively high pH optimum, and the strict specificity and high affinity for the divalent metal ion cofactor.  相似文献   

3.
The p-menthane monoterpenes of the Mentha species are biosynthesized from geranyl pyrophosphate via the monocyclic olefin 4S-limonene. A monoterpene cyclase was isolated from both Mentha x piperita (peppermint) and Mentha spicata (spearmint) that catalyzes the cyclization of geranyl pyrophosphate to 4S-limonene. This enzyme, 4S-limonene synthase, was purified to apparent homogeneity by dye ligand, anion exchange, and hydrophobic interaction chromatography. Since the monoterpenes of Mentha are synthesized and secreted in modified epidermal hairs called glandular trichomes, an extract of isolated glandular trichome cells was used as the source of this enzyme. A combination of gel permeation chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that purified 4S-limonene synthase had a native molecular weight of 56,000 and was monomeric. The principal product of the enzyme was enantiomerically pure (-)-4S-limonene, and a catalytic constant of 0.3/s was determined. The basic properties of 4S-limonene synthase from both M. x piperita and M. spicata are identical and, in general, are similar to those of other monoterpene, sesquiterpene, and diterpene cyclases isolated from microorganisms and higher plants.  相似文献   

4.
Cell-free homogenates from sage (Salvia officinalis) leaves convert dimethylallyl pyrophosphate and isopentenyl pyrophosphate to a mixture of geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate, with farnesyl pyrophosphate predominating. These prenyltransferase activities were localized primarily in the soluble enzyme fraction, and separation of this preparation on Sephadex G-150 revealed the presence of a partially resolved, labile geranyl pyrophosphate synthase activity. The product of the condensation reaction between [1-14C]dimethylallyl pyrophosphate and [1-3H]isopentenyl pyrophosphate was verified as [14C,1-3H]geranyl pyrophosphate by TLC isolation, enzymatic hydrolysis to geraniol, degradative studies, and the preparation of the crystalline diphenylurethane. The cis-isomer, neryl pyrophosphate, was not a product of the enzymatic reaction. By employing a selective tissue extraction procedure, the geranyl pyrophosphate synthase activity was localized in the leaf epidermal glands, the site of monoterpene biosynthesis, suggesting that the role of this enzyme is to supply the C10 precursor for the production of monoterpenes. Glandular extracts enriched in geranyl pyrophosphate synthase were partially purified by a combination of hydrophobic interaction chromatography on phenyl-Sepharose and gel permeation chromatography on Sephadex G-150. Substrate and product specificity studies confirmed the selective synthesis of geranyl pyrophosphate by this enzyme, which was also characterized with respect to molecular weight, pH optimum, cation requirement, inhibitors, and kinetic parameters, and shown to resemble other prenyltransferases.  相似文献   

5.
Humulene cyclase and caryophyllene cyclase, two enzymes which catalyze the cyclization of farnesyl pyrophosphate to the respective sesquiterpene olefins, have been partially purified from the supernatant fraction of a sage (Salvia officinalis) leaf epidermis extract and separated from each other by a combination of hydrophobic interaction, gel filtration, and ion-exchange chromatography. The molecular weight of both cyclases was estimated by gel filtration to be 57,000 and both cyclases exhibited a pH optimum of 6.5 and preferred Mg2+ (Km approximately 1.5 mM) as the required divalent metal cation. Both enzymes possessed a Km of about 1.7 microM for farnesyl pyrophosphate, were strongly inhibited by p-hydroxymercuribenzoate, and exhibited comparable sensitivities to a variety of other potential inhibitors. The properties of the two sesquiterpene olefin cyclases, which are the first from a higher plant source to be examined in detail, were very similar to each other and to other monoterpene, sesquiterpene, and diterpene cyclases previously described.  相似文献   

6.
Gamma-terpinene is a monoterpene and a major component of essential oils made from citrus fruits and shows strong antioxidant activity in various assay systems. Plant gamma-terpinene synthase is a member of the monoterpene cyclase family, which produces a specific monoterpene through cyclization of geranyl diphosphate (GPP), but the monoterpene cyclases have not been fully characterized. It is necessary to prepare large amounts of gamma-terpinene synthase from Citrus unshiu (Satsuma mandarin) for the characterization, on this purpose we expressed the protein in Escherichia coli (E. coli) cells. As most monoterpene synthases have plastid-targeting signals, a gene lacking these signals was prepared and functionally expressed in E. coli cells harboring extra copies of the argU gene. The purified enzyme was incubated with GPP and the main product was confirmed to be gamma-terpinene by GC/MS.  相似文献   

7.
(4S)-Limonene synthase, a monoterpene cyclase isolated from the secretory cells of the glandular trichomes of Mentha x piperita (peppermint), catalyzes the cyclization of geranyl pyrophosphate to (4S)-limonene, a key intermediate in the biosynthesis of p-menthane monoterpenes in Mentha species. The enzyme synthesizes principally (-)-(4S)-limonene (greater than 94% of the total products), plus several other monoterpene olefins. The general properties of (4S)-limonene synthase resemble those of other monoterpene cyclases. The enzyme shows a pH optimum near 6.7, an isoelectric point of 4.35, and requires a divalent metal ion for catalysis, either Mg2+ or Mn2+, with Mn2+ preferred. The Km value measured for geranyl pyrophosphate was 1.8 microM. The activity of (4S)-limonene synthase was inhibited by sodium phosphate, sodium pyrophosphate, and reagents directed against the amino acids cysteine, methionine, and histidine. In the presence of Mn2+, geranyl pyrophosphate protected against cysteine-directed inhibition, suggesting that at least one cysteine residue is located at or near the active site. Experiments with alternate substrates and substrate analogs confirmed many elements of the proposed reaction mechanism, including the binding of geranyl pyrophosphate in the form of a complex with the divalent metal ion, the preliminary isomerization of geranyl pyrophosphate to linalyl pyrophosphate (a bound intermediate capable of cyclization), and the participation of a series of carbocation:pyrophosphate anion pairs in the reaction sequence.  相似文献   

8.
(4S)-Limonene synthase, isolated from glandular trichome secretory cell preparations of Mentha x piperita (peppermint) leaves, catalyzes the metal ion-dependent cyclization of geranyl pyrophosphate, via 3S-linalyl pyrophosphate, to (-)-(4S)-limonene as the principal product. Treatment of this terpene cyclase with the histidine-directed reagent diethyl pyrocarbonate at a concentration of 0.25 mM resulted in 50% loss of enzyme activity, and this activity could be completely restored by treatment of the preparation with 5 mM hydroxylamine. Inhibition with diethyl pyrocarbonate was distinguished from inhibition with thiol-directed reagents by protection studies with histidine and cysteine carried out at varying pH. Inactivation of the cyclase by dye-sensitized photooxidation in the presence of rose bengal gave further indication of the presence of a readily modified histidine residue. Protection of the enzyme against inhibition with diethyl pyrocarbonate was afforded by the substrate geranyl pyrophosphate in the presence of Mn2+, and by the sulfonium ion analog of the linalyl carbocation intermediate of the reaction in the presence of inorganic pyrophosphate plus Mn2+, suggesting that an essential histidine residue is located at or near the active site. Similar studies on the inhibition of other monoterpene and sesquiterpene cyclases with diethyl pyrocarbonate suggest that a histidine residue (or residues) may play an important role in catalysis by this class of enzymes.  相似文献   

9.
A prenyltransferase (EC 2.5.1.1) was isolated from cell cultures of Lithospermum erythrorhizon. The enzyme was purified 92-fold by subsequent chromatography on DEAE-Sephacel, phenyl-Sepharose, and Sephadex G-150. Geranyl pyrophosphate (GPP) was the sole product of the enzymatic reaction with dimethylallyl pyrophosphate and isopentenyl pyrophosphate as the substrates. The enzyme showed a molecular weight of 73,000, estimated by gel chromatography on Sephadex G-150, and an isoelectric point at pH 4.95, determined by analytical isoelectric focusing. It had an absolute requirement for a divalent cation with Mg2+ and Mn2+ being most effective. The enzyme was soluble rather than membrane-bound. The physiological role of this prenyltransferase probably is to supply GPP for the biosynthesis of shikonin. It is the first chain-length specific geranyl pyrophosphate synthase reported from eukaryotic cells.  相似文献   

10.
A soluble enzyme preparation from immature sage (Salvia officinalis) leaves has been shown to catalyze the cation-dependent cyclization of geranyl pyrophosphate to the isomeric monoterpene olefins (+/-)-alpha-pinene and (-)-beta-pinene and to lesser amounts of camphene and limonene (Gambliel, H., and Croteau, R. (1982) J. Biol. Chem. 257, 2335-2342). This preparation was fractionated by gel filtration on Sephadex G-150 to afford two regions of enzymic activity termed geranyl pyrophosphate:pinene cyclase I (Mr approximately equal to 96,000), which catalyzed the conversion of geranyl pyrophosphate to the bicyclic olefin (+)-alpha-pinene, and to smaller quantities of the rearranged olefin (+)-camphene and the monocyclic olefin (+)-limonene, and geranyl pyrophosphate:pinene cyclase II (Mr approximately equal to 55,000), which transformed the acyclic precursor to (-)-alpha-pinene and (-)-beta-pinene, as well as to (-)-camphene, (-)-limonene, and the acyclic olefin myrcene. The multiple olefin biosynthetic activities co-purified with pinene cyclase I on four subsequent chromatographic and electrophoretic steps, and the ability to cyclize geranyl pyrophosphate and the related allylic pyrophosphates neryl pyrophosphate and linalyl pyrophosphate was likewise coincident throughout purification. Fractionation of pinene cyclase II by an identical sequence showed that the activities for the synthesis of the stereochemically related (-)-olefins co-purified, as did the ability to utilize the three acyclic precursors. The general properties of cyclase I and cyclase II were determined, and a scheme for the biosynthesis of the pinenes and related monoterpene olefins was proposed.  相似文献   

11.
Prenyltransferase (EC 2.5.1.1) has been purified to homogeneity from the supernatant fraction of yeast by ammonium sulfate fractionation, diethylaminoethyl-cellulose and hydroxylapatite chromatography, and column isoelectric focusing techniques. The active enzyme from isoelectric focusing columns emerged as a single symmetrical peak with specific activities 15- to 35-fold higher than previously reported preparations. The enzyme was found to be homogeneous by continuous polyacrylamide gel electrophoresis at pH 8.4 and discontinuous polyacrylamide gel electrophoresis at pH 6.9 as well as sodium dodecyl sulfate polyacrylamide electrophoresis at pH 7.0. By means of gel chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis, the protein was shown to be a dimer with a molecular weight of 84,000 plus or minus 10%. The isoelectric point of the enzyme was determined to be 5.3. The enzyme synthesizes farnesyl and geranylgeranyl pyrophosphates from dimethylallyl, geranyl, and farnesyl pyrophosphates. Michaelis constants for the enzyme were 4, 8, and 14 mu M for isopentenyl, dimethylallyl, and geranyl pyrophosphates, respectively.  相似文献   

12.
A major wound response in grand fir (Abies grandis) sapling stems is the rapid increase in monoterpene production at the site of injury. Monoterpene cyclases (synthases) catalyze the formation of monoterpenes from geranyl pyrophosphate, and total cyclase activity increases markedly on wounding. At least six distinct cyclases, producing different monoterpene products, have been isolated from wounded grand fir saplings and characterized. The predominant wound-inducible cyclase produces both alpha- and beta-pinene. This pinene cyclase was purified, and polyclonal antibodies were generated in rabbits against the sodium dodecyl sulfate-denatured protein. The antibody preparation was found to cross-react by Western blotting with other grand fir monoterpene cyclases that produce different olefinic products, but not with monoterpene cyclases from related conifer species (Pinus contorta and P. ponderosa) or from angiosperms (Mentha piperita and M. spicata). The increase in monoterpene cyclase activity after wounding was closely correlated with the appearance of new cyclase protein as determined by immunoblotting. These results indicate that the wound-dependent increase in monoterpene cyclase activity is a consequence of de novo synthesis of cyclase protein.  相似文献   

13.
Monoterpene cyclases are the key enzymes in the monoterpene biosynthetic pathway, as they catalyze the cyclization of the ubiquitous geranyl diphosphate (GDP) to the specific monoterpene skeletons. From Citrus limon, four monoterpene synthase-encoding cDNAs for a beta-pinene synthase named Cl(-)betaPINS, a gamma-terpinene synthase named ClgammaTS, and two limonene synthases named Cl(+)LIMS1 and Cl(+)LIMS2 were recently isolated [J. Lücker et al., Eur. J. Biochem. 269 (2002) 3160]. The aim of our work in this study was to identify domains within these monoterpene synthase enzymes determining the product specificity. Domain swapping experiments between Cl(-)betaPINS and ClgammaTS and between Cl(+)LIMS2 and ClgammaTS were conducted. We found that within the C-terminal domain of these monoterpene synthases, a region comprising 200 amino acids, of which 41 are different between Cl(-)betaPINS and ClgammaTS, determines the specificity for the formation of beta-pinene or gamma-terpinene, respectively, while another region localized further downstream is required for a chimeric enzyme to yield products in the same ratio as in the wild-type ClgammaTS. For Cl(+)LIMS2, the two domains together appear to be sufficient for its enzyme specificity, but many chimeras were inactive probably due to the low homology with ClgammaTS. Molecular modeling was used to further pinpoint the amino acids responsible for the differences in product specificity of ClgammaTS and Cl(-)betaPINS.  相似文献   

14.
(+)-Pinene cyclase (synthase) from Salvia officinalis leaf catalyzes the cyclization of geranyl pyrophosphate, via (3R)-linalyl pyrophosphate and the (4R)-alpha-terpinyl cation, to (+)-alpha-pinene and to lesser quantities of stereochemically related monoterpene olefins, whereas (-)-pinene cyclase converts the same achiral precursor, via (3S)-linalyl pyrophosphate and the (4S)-alpha-terpinyl cation, to (-)-alpha-pinene and (-)-beta-pinene and to lesser amounts of related olefins. Racemic thia analogs of the linalyl and alpha-terpinyl carbocation intermediates of the reaction sequence were previously shown to be good uncompetitive inhibitors of monoterpene cyclases, and inhibition was synergized by the presence of inorganic pyrophosphate. These results suggested that the normal reaction proceeds through a series of carbocation:pyrophosphate anion paired intermediates. Both the (4R)- and the (4S)-thia and -aza analogs of the alpha-terpinyl cation were prepared and tested as inhibitors with the antipodal pinene cyclases, both in the absence and in the presence of inorganic pyrophosphate. Although the inhibition kinetics were complex, cooperative binding of the analogs and inorganic pyrophosphate was demonstrated, consistent with ion pairing of intermediates in the course of the normal reaction. Based on the antipodal reactions catalyzed by the pinene cyclases, stereochemical differentiation between the (4R)- and the (4S)-analogs was anticipated; however, neither enzyme effectively distinguished between enantiomers of the thia and aza analogs of the alpha-terpinyl carbocation. Enantioselectivity in the enzymatic conversion of (RS)-alpha-terpinyl pyrophosphate to limonene by the pinene cyclases was also examined. Consistent with the results obtained with the thia and aza analogs, the pinene cyclases were unable to discriminate between enantiomers of alpha-terpinyl pyrophosphate in this unusual reaction. Either the alpha-terpinyl antipodes are too similar to allow differentiation by the pinene cyclases, or these enzymes lack an inherent requirement to distinguish the (4R)- and (4S)-forms because they encounter only one enantiomer in the course of the normal reaction from geranyl pyrophosphate.  相似文献   

15.
Monoterpene cyclases catalyze the divalent metal ion-dependent conversion of geranyl pyrophosphate, the ubiquitous C10 intermediate of isoprenoid biosynthesis, to a variety of monoterpene skeletons, and the pyrophosphoryl moiety is a primary determinant for substrate binding by these enzymes. To determine what specific features of this functional group are critical for enzymatic recognition, inorganic pyrophosphate and a series of structurally related analogs were examined as inhibitors of geranyl pyrophosphate:(+)-alpha-pinene cyclase and geranyl pyrophosphate:(+)-bornyl pyrophosphate cyclase from sage (Salvia officinalis). Analysis of trends in the magnitude of inhibition by the analogs relative to inorganic pyrophosphate indicated that the combination of ionization state (formal charge) at the enzymatic pH optimum, ability to chelate divalent metal ions, and intramolecular flexibility is required for effective interaction with both cyclases. Only when all of these criteria are met is inhibition of cyclization comparable to that observed with inorganic pyrophosphate.  相似文献   

16.
The sesquiterpene cyclase, trichodiene synthetase, has been purified from a supernatant fraction of Fusarium sporotrichioides by hydrophobic interaction, anion exchange, and gel filtration chromatography. Purified enzyme had a specific activity 15-fold higher than that previously reported for preparations of terpene cyclases. Molecular weight determinations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography indicated the enzyme to be a dimer with a subunit of Mr 45,000. The requirement of Mg2+ (Km 0.1 mM) for activity could be partially substituted with Mn2+ at a concentration of 0.01 mM, but higher concentrations of Mn2+ were inhibitory. Maximum activity was observed between pH 6.75 and pH 7.75. The Km for farnesyl pyrophosphate was 0.065 microM.  相似文献   

17.
Conversion of geranyl pyrophosphate to cyclic monoterpenes is considered to involve the preliminary isomerization of this acyclic precursor to enzyme-bound linalyl pyrophosphate and the cyclization of this tertiary intermediate. 2-Fluorogeranyl pyrophosphate and 2-fluorolinalyl pyrophosphate are effective competitive inhibitors of the cyclization of geranyl pyrophosphate by several different monoterpene cyclases, and the electron withdrawing alpha-fluorine substituent was shown to suppress the rate of cyclic product formation from both tritium-labeled analogs by at least two orders of cyclic These results indicate that both steps of the coupled isomerization-cyclization sequence are initiated by ionization of an allylic pyrophosphate, and they confirm the electrophilic nature of this enzymatic reaction type and its similarity to the prenyltransferase reaction.  相似文献   

18.
Tansy (Tanacetum vulgare L.) produces an essential oil containing the optically pure monoterpene ketone, (-)-camphor, as a major constituent. A soluble enzyme preparation from immature leaves of this plant converts the acyclic precursor [1-3H]geranyl pyrophosphate to the bicyclic monoterpene alcohol borneol in the presence of MgCl2, and oxidizes a portion of the borneol to camphor in the presence of a pyridine nucleotide. The identity of the major biosynthetic product as borneol was confirmed by chemical oxidation to camphor and crystallization of the derived oxime to constant specific radioactivity. The stereochemistry of the borneol was verified as the (-)-(1S,4S) isomer by oxidation to camphor, conversion to the corresponding ketal with D-(-)-2,3-butanediol, and separation of diastereoisomers by radio-gas-liquid chromatography. When enzyme reaction mixtures were treated with a mixture of acid phosphatase and apyrase, following an initial ether extraction of labeled borneol, additional quantities of borneol were generated, indicating the presence of a phosphorylated derivative of borneol. This water-soluble metabolite was prepared by large-scale enzyme incubations with [1-3H]geranyl pyrophosphate (plus phosphatase inhibitor), and the identity of the initial cyclization product was established as (-)-bornyl pyrophosphate by direct ion-exchange chromatographic analysis and enzymatic hydrolysis. The pathway for the formation of (-)-(1S,4S)-camphor was therefore identical to that previously demonstrated for the (+)-(1R,4R) isomer, involving cyclization of geranyl pyrophosphate to bornyl pyrophosphate, hydrolysis of this intermediate to borneol, and oxidation of the alcohol to the ketone. The labeling pattern of the product derived from [1-3H2, U-14C]geranyl pyrophosphate was determined by oxidation of the biosynthetic borneol to camphor and selective removal of tritium by exchange of the alpha hydrogens at C3 of the ketone. This labeling pattern was identical to that observed previously for the (+) isomer, suggesting the same mechanism of cyclization, but of opposite enantiospecificity. Some properties of the antipodal (+)- and (-)-bornyl pyrophosphate cyclases were compared.  相似文献   

19.
Soluble enzyme preparations from sage (Salvia officinalis) leaves catalyze the hydrolysis of (+)-bornyl pyrophosphate to (+)-borneol, which is an essential step in the biosynthesis of the cyclic monoterpene (+)-camphor [(1R,4R)-bornan-2-one] in this tissue. Chromatography of the preparation on Sephadex G-150 allowed the separation of two regions of bornyl pyrophosphate hydrolase activity. One region was further separated into a pyrophosphate hydrolase and a monophosphate hydrolase by chromatography on hydroxylapatite, but the other contained pyrophosphate and monophosphate hydrolase activities which were inseparable by this or any other chromatographic technique tested. Each phosphatase and pyrophosphatase activity was characterized with respect to molecular weight, pH optimum, response to inhibitors, Km for bornyl phosphate or bornyl pyrophosphate, and substrate specificity, and each activity was distinctly different with regard to these properties. One pyrophosphatase activity was specific for pyrophosphate esters of sterically hindered monoterpenols such as bornyl pyrophosphate. The other preferred pyrophosphate esters of primary allylic alcohols such as geranyl pyrophosphate and neryl pyrophosphate, which are precursors of cyclic monoterpenes, and it hydrolyzed geranyl pyrophosphate at faster rates than neryl pyrophosphate. The monophosphate hydrolase activities were similar in substrate specificity, showing a preference for phosphate esters of primary allylic alcohols. The terpenyl pyrophosphate hydrolase exhibiting specificity for bornyl pyrophosphate may be involved in camphor biosynthesis in vivo, while the terpenyl pyrophosphate hydrolase more specific for geranyl pyrophosphate was shown to be a source of potential interference in studies on monoterpene cyclization processes.  相似文献   

20.
A geranyl diphosphate synthase (EC 2.5.1.1), which catalyzes the formation of geranyl diphosphate from dimethylallyl diphosphate and isopentenyl diphosphate, was isolated from Vitis vinifera L. cv Muscat de Frontignan cell cultures. Purification of the enzyme was achieved successively by ammonium sulfate precipitation and chromatography on DEAE-Sephacel, hydroxylapatite, Mono Q, Phenyl Superose, Superose 12, and preparative nondenaturing polyacrylamide gels. The enzyme formed only geranyl diphosphate as a product. In all cases, neither neryl diphosphate, the cis isomer, nor farnesyl diphosphate was detected. The enzyme showed a native molecular mass of 68 [plus or minus] 5 kD as determined by gel permeation. On sodium dodecyl sulfate polyacrylamide gels, geranyl diphosphate synthase purified to electrophoretic homogeneity migrated with a molecular mass of 66 [plus or minus] 2 kD. Michaelis constants for isopentenyl diphosphate and dimethylallyl diphosphate were 8.5 and 56.8 [mu]M, respectively. The enzyme required Mn2+ and Mg2+ as cofactors and its activity was enhanced by Triton X-100. Inorganic pyrophosphate, aminophenylethyl diphosphate, and geranyl diphosphate had inhibitory effects on the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号