首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The CSH1 gene product is the first protein implicated to affect the phenotype of cell surface hydrophobicity in Candida albicans. Ablation of expression of CSH1 resulted in a 75% loss of the cell surface hydrophobicity (CSH) phenotype. When the C. albicans csh1 knockout derivative was cultured from frozen stocks, it had reacquired CSH levels similar to the parent strain and isogenic reintegrant in the absence of Csh1p re-expression through an unknown mechanism. Prior to reacquisition of CSH, the knockout was less adherent to fibronectin than the parent. Comparison of the csh1 knockout and CSH1 reintegrant in a hematogenous dissemination model allows analysis of Csh1p contribution to virulence using matched strains with similar levels of CSH. No statistical significance between the knockout and reintegrant was found in virulence based on median day of survival, although a reproducible delay in onset of lethal infection for the knockout was observed. A modest difference in mucosal colonization in a vaginal infection model was also observed between the knockout and reintegrant. The present study demonstrates that Csh1p contributes to virulence of C. albicans in mice, but other gene products also contribute to the CSH phenotype and virulence.  相似文献   

3.
A new class of Saccharomyces cerevisiae mutants (aat1 - amino acid transport) has been identified. These mutants are unable to grow on rich medium or on minimal medium supplemented with certain amino acids (isoleucine, methionine, phenylalanine, tyrosine or valine). This phenotype is directly linked to the presence of the leu2 allele in these strains: aat1 LEU2 organisms grow normally on all media tested. Leucine uptake through the leucine-specific permease is inhibited to less than 35% of wild-type levels in aat1 cells preincubated in nonpermissive media, and the activity of the general amino acid permease is also low in these conditions. aat1 cells are therefore unable to grow on rich media because they cannot take up enough leucine to supplement their auxotrophic requirement.  相似文献   

4.
Abstract Specificity of peptide transport systems in Candida albicans was studied using as an experimental tool novel anticandidal peptides, containing the N3-4-methoxyfumaroyl- l -2,3-diamino-propanoic acid residue. Studies on cross-resistance and on peptide uptake by spontaneous mutants resistant to toxic peptides, confirmed the multiplicity of peptide permeases in Candida albicans . At least two peptide permeases exist in this microorganism; the first one, specific for di- and tripeptides and the second, for oligopeptides containing 3–6 amino acids. The rate of the tritetra tetra-, penta- and hexapeptide transport in the mycelial form of Candida albicans is about 2-times higher than in the yeast form, while that of dipeptides is markedly reduced.
Tripeptides are proposed as the most efficient carriers for the delivery of 'warhead' amino acids into Candida albicans cells.  相似文献   

5.
Candida albicans cells have low levels of ergosterol when grown in ascorbic acid-supplemented media. When cells are grown in hydroquinone-supplemented media, the ergosterol levels became higher as compared to normal cells. The uptake of lysine, glycine, glutamic acid, proline, methionine and serine is reduced in hydroquinone-supplemented cells. In contrast to hydroquinone-supplemented cells, the rate and level of accumulation of these amino acids are higher in ascorbic acid-supplemented cells. Nystatin-resistant isolates of C. albicans with low ergosterol contents also exhibit an increased rate and level of accumulation of these amino acids. The uptake of phenylalanine and leucine remained unaffected by such a change in ergosterol levels brought about by different supplementation of the media. The results demonstrate a correlation between ergosterol levels and amino acids uptake. Contrary to various reports, the rate of K+ efflux does not seem to correlate with the amino acid uptake in C. albicans cells.  相似文献   

6.
Cell surface hydrophobicity (CSH) is considered to be one of several virulence factors of Candida yeast-like fungi. The aim of the study was a measurment of hydrophobic properties of Candida sp. depending on growth conditions. A total of 139 strains of Candida (80 - C. albicans and 59 - C. non-albicans) were examined. The method of salt aggregation test (SAT) was used. The strains were cultured on three different media, in two variants of incubation temperature and time. The incubation temperature and microbiological medium affected CSH of just C. albicans strains. The influence of incubation time on CSH of examined species of Candida was not occurred. There was a strong correlation between CSH and species of Candida demonstrated in the study Hydrophobic properties were more frequent and stronger among strains of C. non-albicans than C. albicans species. The results of the study indicates that CSH of Candida spp. is a dynamic feature. The ability to change surface properties may play a role in pathogenesis of candidosis.  相似文献   

7.
An IMP dehydrogenase gene was isolated from Candida albicans on a approximately 2.9-kb XbaI genomic DNA fragment. The putative Candida IMP dehydrogenase gene (IMH3) encodes a protein of 521 amino acids with extensive sequence similarity to the IMP dehydrogenases of Saccharomyces cerevisiae and various other organisms. Like the S. cerevisiae IMH3 sequence characterized in the genome sequencing project, the open reading frame of the C. albicans IMH3 gene is interrupted by a small intron (248 bp) with typical exon-intron boundaries and a consensus S. cerevisiae branchpoint sequence. IMP dehydrogenase mRNAs are detected in both the yeast and hyphal forms of C. albicans as judged by Northern hybridization. Growth of wild-type (sensitive) C. albicans cells is inhibited at 1 microg of mycophenolic acid (MPA), a specific inhibitor of IMP dehydrogenases, per ml, whereas transformants hosting a plasmid with the IMH3 gene are resistant to MPA levels of up to at least 40 microg/ml. The resistance of cells to MPA is gene dosage dependent and suggests that IMH3 can be used as a dominant selection marker in C. albicans.  相似文献   

8.
To identify Candida albicans genes whose proteins are necessary for host cell interactions and virulence, a collection of C. albicans insertion mutants was screened for strains with reduced capacity to damage endothelial cells in vitro. This screen identified CKA2. CKA2 and its homologue CKA1 encode the catalytic subunits of the protein kinase CK2. cka2delta/cka2delta strains of C. albicans were constructed and found to have significantly reduced capacity to damage both endothelial cells and an oral epithelial cell line in vitro. Although these strains invaded endothelial cells similarly to the wild-type strain, they were defective in oral epithelial cell invasion. They were also hypersusceptible to hydrogen peroxide, but not to high salt or to cell wall damaging agents. A cka1delta/cka1delta mutant caused normal damage to both endothelial cells and oral epithelial cells, and it was not hypersusceptible to hydrogen peroxide. However, overexpression of CKA1 in a cka2delta/cka2delta strain restored wild-type phenotype. Although the cka2delta/cka2delta mutant had normal virulence in the mouse model of haematogenously disseminated candidiasis, it had significantly attenuated virulence in the mouse model of oropharyngeal candidiasis. Therefore, Cka2p governs the interactions of C. albicans with endothelial and oral epithelial cells in vitro and virulence during oropharyngeal candidiasis.  相似文献   

9.
氨基酸对白念珠菌形态学影响的研究   总被引:2,自引:0,他引:2  
目的初步探讨单个氨基酸对白念珠菌形态学的影响。方法用0.67%的酵母氮源基础培养基和2%葡萄糖配制成SD合成培养基,37%恒温摇床培养,研究单个天然氨基酸对白念珠菌形态学的影响,并分别通过不添加碳源和厌氧条件下培养观察对精氨酸诱导的菌丝的影响。结果在含10mmol/L的L-精氨酸的SD液体培养基中,可见大量的菌丝。在含10mmol/L的L一半胱氨酸、L.苏氨酸、L-缬氨酸和L-色氨酸的sD液体培养基中,可见典型的酵母细胞,未见菌丝。在含10mmol/L的其他单个氨基酸的SD液体培养基中可见混合的酵母和菌丝结构。在不含氨基酸或含各种天然氨基酸的SD固体培养基上,白念珠菌的菌落均光滑。但在含10mmol/L的L-精氨酸固体培养基上,光滑的菌落周围可见小的突起,镜下可见菌丝。无氧条件下,无论有无碳源,含精氨酸的SD培养液中白念珠菌只能形成酵母细胞,生长部分受到抑制。结论精氨酸可以诱导白念珠菌菌丝形成,厌氧条件下精氨酸不能诱导白念珠菌菌丝形成。  相似文献   

10.
Cell surface hydrophobicity (CSH) of Candida species enhances virulence by promoting adhesion to host tissues. Biochemical analysis of yeast cell walls has demonstrated that the most significant differences between hydrophobic and hydrophilic yeasts are found in the acid-labile fraction of Candida albicans phosphomannoprotein, suggesting that this fraction is important in the regulation of the CSH phenotype. The acid-labile fraction of C. albicans is unique among fungi, in that it is composed of an extended polymer of beta-1,2-mannose linked to the acid-stable region of the N-glycan by a phosphodiester bond. C. albicans serotype A and B strains both contain a beta-1,2-mannose acid-labile moiety, but only serotype A strains contain additional beta-1,2-mannose in the acid-stable region. A knockout of the C. albicans homolog of the Saccharomyces cerevisiae MNN4 gene was generated in two serotype B C. albicans patient isolates by using homologous gene replacement techniques, with the anticipation that they would be deficient in the acid-labile fraction and, therefore, demonstrate perturbed CSH. The resulting mnn4delta-deficient derivative has no detectable phosphate-linked beta-1,2-mannose in its cell wall, and hydrophobicity is increased significantly under conditions that promote the hydrophilic phenotype. The mnn4delta mutant also demonstrates an unanticipated perturbation in the acid-stable mannan fraction. The present study reports the first genetic knockout constructed in a serotype B C. albicans strain and represents an important step for dissecting the regulation of CSH.  相似文献   

11.
Lactobacillus casei 393 cells which were energized with glucose (pH 6.0) took up glutamine, asparagine, glutamate, aspartate, leucine, and phenylalanine. Little or no uptake of several essential amino acids (valine, isoleucine, arginine, cysteine, tyrosine, and tryptophan) was observed. Inhibition studies indicated that there were at least five amino acid carriers, for glutamine, asparagine, glutamate/aspartate, phenylalanine, or branched-chain amino acids. Transport activities had pH optima between 5.5 and 6.0, but all amino acid carriers showed significant activity even at pH 4.0. Leucine and phenylalanine transport decreased markedly when the pH was increased to 7.5. Inhibitors which decreased proton motive force (delta p) nearly eliminated leucine and phenylalanine uptake, and studies with de-energized cells and membrane vesicles showed that an artificial electrical potential (delta psi) of at least -100 mV was needed for rapid uptake. An artificial delta p was unable to drive glutamine, asparagine, or glutamate uptake, and transport of these amino acids was sensitive to a decline in intracellular pH. When intracellular pH was greater than 7.7, glutamine, asparagine, or glutamate was transported rapidly even though the proton motive force had been abolished by inhibitors.  相似文献   

12.
The fadL+ gene of Escherichia coli encodes an outer membrane protein (FadL) essential for the uptake of long-chain fatty acids (C12 to C18). The present study shows that in addition to being required for uptake of and growth on the long-chain fatty acid oleate (C18:1), FadL acts as a receptor of bacteriophage T2. Bacteriophage T2-resistant (T2r) strains lacked FadL and were unable to take up and grow on long-chain fatty acids. Upon transformation with the fadL+ clone pN103, T2r strains became sensitive to bacteriophage T2 (T2s), became able to take up long-chain fatty acids at wild-type levels, and contained FadL in the outer membrane.  相似文献   

13.
Abstract Amino acid uptake was followed during pH-regulated dimorphism of Candida albicans . It was observed that transport activities of various amino acids differed with the morphological phenotype. The uptake rates of l-alanine , l -phenylalanine and of l -lysine were lower and those of l -methionine were higher in elongated hypha (germ tube), while the rates of glycine, l -glutamic acid and l -proline were similar in bud and hyphal phenotypes. Minimum threshold of amino acids transport activity is required at the time of phenotypic commitment in a diverging population of Candida albicans .  相似文献   

14.
Protein synthesis at different stages of yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans was evaluated by following incorporation of radioactive amino acids into the acid-insoluble cellular material. In passing from the early germ-tube formation (60-90 min) to the mature hyphal cell (240-270 min) there was a marked decrease in the capacity for protein synthesis. Apparently, this decrease was not due to a decreased amino acid uptake into the soluble cellular pool or to exhaustion of carbon/energy source in the inducing medium with consequent arrest of growth. Protein synthesis, however, did not decay when amino acids at high concentration were added to the medium fostering the yeast-mycelial transition and this effect was potentiated by glucose. Analysis of the intracellular amino acid pool showed that both germ-tubes and hyphal cells were relatively depleted of several amino acids as compared to the yeast-form cells, whereas in the hyphae there was a higher concentration of glutamic acid/glutamine, the latter being the predominant component. These modulations in amino acid pool composition were not seen when yeasts were converted to hyphae in an amino acid-rich induction medium. This study emphasizes that yeast-form cells of C. albicans may efficiently convert to the mycelial form even under a progressively lowered rate of protein synthesis, and suggests that initiation of hyphal morphogenesis in the presence of N-acetyl-D-glucosamine is somehow separated from cellular growth.  相似文献   

15.
The human fungal pathogen Candida albicans can use proteins as the sole source of nitrogen for growth. The secretion of aspartic proteinases, which have been shown to contribute to virulence of C. albicans, allows the fungus to digest host proteins to produce peptides that must be taken up into the cell by specific transporters. To understand in more detail how C. albicans utilizes proteins as a nitrogen source, we undertook a comprehensive analysis of oligopeptide transporters encoded in the C. albicans genome. We identified eight OPT genes encoding putative oligopeptide transporters, almost all of which are represented by polymorphic alleles in strain SC5314. Expression of these genes was differentially induced when C. albicans was grown in YCB-BSA medium, which contains bovine serum albumin as the sole nitrogen source. Whereas deletion of single OPT genes in strain SC5314 did not affect its ability to utilize proteins as a nitrogen source, opt123delta triple mutants had a severe growth defect in YCB-BSA which was rescued by reintroduction of a single copy of OPT1, OPT2 or OPT3. In addition, forced expression of OPT4 or OPT5 under control of the ADH1 promoter also restored growth of an opt123delta mutant, demonstrating that at least OPT1-OPT5 encode functional peptide transporters. The various oligopeptide transporters differ in their substrate preferences, as shown by the ability of strains expressing specific OPT genes to grow on peptides of defined length and sequence. We present evidence that in addition to the known role of oligopeptide transporters in the uptake of tetra- and pentapeptides these proteins can also transport longer peptides up to at least eight amino acids in length, ensuring an efficient utilization of the various peptides produced via endoproteolytic digestion of proteins by the secreted aspartic proteinases. As even transporters encoded by polymorphic alleles of a single gene exhibited differences in their efficiency to take up specific peptides, the oligopeptide transporters represent an example for how the evolution of gene families containing differentially expressed and functionally optimized members increases the nutritional versatility and, presumably, the adaptation of C. albicans to different host niches.  相似文献   

16.
A mutant of Candida albicans ATCC 10261 was isolated that was defective in the production of beta-N-acetylglucosaminidase (chitobiase). The mutant grew normally in minimal medium supplemented with either glucose or N-acetyl-D-glucosamine (GlcNAc) as carbon and energy source, and the cells formed germ-tubes at 37 degrees C when induced to do so with GlcNAc. However, unlike the wild-type parent strain, the mutant strain did not utilize N,N'-diacetylchitobiose for growth. The mutant and parent strains had similar growth rates on glucose or GlcNAc, similar rates of uptake of these sugars and similar rates of 14C-labelled amino acid incorporation. The chitobiase mutant did, however, contain 53-85% more chitin than the wild-type strain. No reversion of the mutant phenotype was observed following induction of mitotic recombination with UV light, suggesting that the mutant allele (chi) was carried homozygously in the chitobiase-deficient mutant. Although the chitobiase-deficient mutant was pathogenic, it was not as virulent as the wild-type strain.  相似文献   

17.
The yeast Candida boidinii PEP4 and PRB1 genes, encoding proteinase A (PrA) and proteinase B (PrB), respectively, have been cloned and their primary structures were analyzed. The open reading frames of the PEP4 gene (1263 bp encoding a protein of 420 amino acids) and the PRBI gene (1683 bp encoding a protein of 560 amino acids) were found. The deduced amino acid sequences of PrA and PrB are very similar to Saccharomyces cerevisiae PrA and PrB (64% and 61% identities, respectively). Both PEP4 and PRBI genes were disrupted in the C. boidinii genome by one-step gene disruption. The resultant pep4delta and the pep4delta prb1delta strains lost protease activity when compared with the wild-type original strain. The constructed C. boidinii strains are expected to be useful hosts for heterologous protein production.  相似文献   

18.
Autophagy is a transport system of cytoplasmic components to the lysosome/vacuole for degradation well conserved in eukaryotes. Autophagy is strongly induced by nutrient starvation. Several specific proteins, including amino acid synthesis enzymes and vacuolar enzymes, are increased during nitrogen starvation in wild-type cells but not in autophagy-defective delta atg7 cells despite similar mRNA levels. We further examined deficiencies in these cells. Bulk protein synthesis was substantially reduced in delta atg7 cells under nitrogen starvation compared with wild-type cells. The total intracellular amino acid pool was reduced in delta atg7 cells, and the levels of several amino acids fell below critical values. In contrast, wild-type cells maintained amino acid levels compatible with life. Autophagy-defective cells fail to maintain physiologic amino acid levels, and their inability to synthesize new proteins may explain most phenotypes associated with autophagy mutants at least partly.  相似文献   

19.
Proline-induced germ-tube formation and cell-cell aggregation in four strains of Candida albicans were completely inhibited when the pH of the medium was 5.0 or lower, whereas morphogenesis induced by N-acetylglucosamine (GlcNAc) was unaffected even at pH 4.5. The pH sensitivity of proline-induced germ-tube formation was not caused by a modulation of proline uptake, which was unchanged over the pH range 4.5-6.5. The proline uptake system was specific, constitutive and subject to ammonium repression, and only one permease was detected, with a Km of 179 microM. Cultures deprived of nitrogen in the presence of glucose were derepressed for proline uptake but the yeast-mycelial transition could not be mediated by either proline or GlcNAc. The inhibition of morphogenesis was reversed when the nitrogen starvation was relieved by the addition of ammonium ions, proline, or certain amino acids. These results indicate that the nitrogen status of the cells is critical for the morphogenesis of C. albicans.  相似文献   

20.
Hamycin is an antifungal antibiotic produced by Streptomyces pimprina Thirum. In the present study, the effect of hamycin on (a) the phagocytosis of Candida albicans by murine peritoneal macrophages and (b) the cell surface hydrophobicity (CSH) of C. albicans was investigated. Addition of hamycin to the culture of macrophages and Candida cells increased the susceptibility of Candida cells to the phagocytosis by macrophages. Pretreatment of Candida cells with hamycin increased their vulnerability to killing by macrophages. Examination of physico-chemical properties of Candida cell surface showed a significant decrease in the CSH. These findings suggest that the binding of hamycin to Candida cells induces biochemical/physico-chemical alterations of the surface, so that it becomes more susceptible to phagocytosis by murine macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号