首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in relative left-to-right lung blood flow ratios were followed as an index of vascular radiation injury in left-hemithorax-irradiated Sprague-Dawley rats. Single doses of 11 to 21 Gy gamma radiation resulted in a dose-dependent decrease in relative blood flow to the irradiated lung from 3 to 5 weeks after exposure during the development of pneumonitis. Blood flow returned to near normal by 5 weeks after lower doses (11-13.5 Gy). After a single dose of 15 Gy the left-to-right blood flow ratio recovered to 75% of normal at 12 weeks and leveled off. Following 18 Gy irradiation a second period of reduced flow began 16 weeks after exposure. After 21 Gy irradiation flow to the irradiated side remained low for 1 year after exposure. Rats that received a single dose of 18 Gy to the left hemithorax were also treated with one or two of the following drugs: captopril, cyproheptadine, dexamethasone, diethylcarbamazine, penicillamine, or theophylline. Dexamethasone was most effective at preventing the decrease in blood flow to the irradiated lung when treatment was continued through the pneumonitis period and dose was not tapered until 8 weeks after radiation exposure. All other drugs and drug combinations were, for the most part, virtually ineffective after the pneumonitis period. There was a relatively poor correlation with earlier vascular permeability surface area product studies. This suggests that endothelial damage, as well as damage to other cell types, contributes to the development of post-irradiation fibrosis in the lung.  相似文献   

2.
Radiation-induced early transient incapacitation (ETI) is often accompanied by severe systemic hypotension. However, postradiation hypotension does not occur with equal frequency in all species and is not reported with consistency in the canine. In an attempt to clarify the differences in reported canine postradiation blood pressures, canine systemic blood pressures were determined both before and after exposure to gamma radiation of either 80 Gy or 100 Gy. Data obtained from six sham-radiated beagles and 12 radiated beagles indicated that 100 Gy, whole-body, gamma radiation produced a decrease in systemic mean blood pressure while 80 Gy, whole-body, gamma radiation did not. Analysis of this data could be consistent with a quantal response to a gamma radiation dose between 80 Gy and 100 Gy.  相似文献   

3.
In an attempt to elucidate mechanisms underlying the irradiation-induced decrease in regional cerebral blood flow (rCBF) in primates, hippocampal and hypothalamic blood flows of rhesus monkeys were measured by hydrogen clearance, before and after exposure to 100 Gy, whole body, gamma irradiation. Systemic blood pressures were monitored simultaneously. Compared to control animals, the irradiated monkeys exhibited an abrupt decline in systemic blood pressure to 35% of the preirradiation level within 10 min postirradiation, falling to 12% by 60 min. A decrease in hippocampal blood flow to 32% of the preirradiation level was noted at 10 min postirradiation, followed by a slight recovery to 43% at 30 min and a decline to 23% by 60 min. The hypothalamic blood flow of the same animals showed a steady decrease to 43% of the preirradiation levels by 60 min postirradiation. The postradiation systemic blood pressure of the allopurinol treated monkeys was not statistically different from the untreated, irradiated monkeys and was statistically different from the control monkeys. However, the treated, irradiated monkeys displayed rCBF values that were not significantly different from the nonirradiated controls. These findings suggest the involvement of free radicals in the postirradiation decrease in regional cerebral blood flow but not necessarily in the postirradiation hypotension seen in the primate.  相似文献   

4.
Therapeutic brain irradiation in children can cause a progressive decline in cognitive functions through a diminished capability to learn and memorize. Because of the known involvement of the hippocampus in memory consolidation, this study was aimed at examining the late effects of gamma radiation on hypothalamic-pituitary-adrenal (HPA) axis activity and hippocampal corticosteroid receptor expression in an animal model of cranial radiotherapy. In the late-response phase, the basal and stress-induced corticosterone levels were not affected by radiation, but the suppression of glucocorticoid negative feedback by dexamethasone was attenuated in irradiated rats. Western blot analyses showed that exposure to radiation led to a decrease of cytosolic glucocorticoid receptor (GR) levels and a concomitant elevation of mineralocorticoid receptor (MR). The results obtained were complemented by those of RT-PCR, since the ratio of GR/MR mRNA was also decreased after radiation exposure. Dexamethasone appeared to be much less effective in shifting GR to the nuclear compartment in irradiated rats than in sham-irradiated animals. However, the expression of chaperones that aid GR intracellular trafficking, Hsp90 and Hsp70, remained unaffected. In conclusion, our data suggest that the hallmark of the late response to gamma radiation is a hyposuppressive state of the HPA axis that is associated with a decrease in both the GR/MR ratio and the nuclear accumulation of dexamethasone-activated GR in the hippocampus.  相似文献   

5.
Late radiation effects were investigated in the mouse small intestine after a daily fractionated radiation treatment. Mice were given 14 X 3 Gy in 2 weeks over a partial abdominal irradiation field. There was evidence for late injury in the intestinal epithelium, the submucosa, and the subserosa. Late damage in the epithelium was shown histologically by a reduced crypt number and villus atrophy at 3 and 6 months but not at 24 h after the end of treatment. The reduction in crypt number was significant in the ileum at 3 and 6 months after irradiation: 100 +/- 4 and 98 +/- 5 (SEM) per circumference, respectively, versus 132 +/- 3 and 146 +/- 6 in age-matched controls (P less than 0.01, t test). The mitotic activity in the crypts of the irradiated animals was significantly increased at all investigated times, suggesting a prolonged but insufficient compensatory response to maintain the mucosal integrity. The repercussion on intestinal epithelial function was, at least in part, reflected by a progressively reduced body weight gain up to 5 g at 3 months after treatment. The ability of the surviving crypt stem cells to form microcolonies after irradiation, however, was not impaired. Evidence for injury in the submucosa was provided from macroscopic and histological examination. Macroscopically, at 6 months after treatment, narrowed and rigid bowel segments surrounded by fibrotic adhesions were observed, causing partial intestinal obstruction. In addition, sometimes focal areas of hemorrhage and infarction in small bowel segments were present. Histologically, diffuse and pronounced submucosal edema without increased fibrosis was seen, together with markedly dilated small blood vessels in focal areas of macroscopic intestinal infarction. The intestinal perfusion, as assessed by 86Rb extraction, was significantly but transiently reduced at 3 months after irradiation. These data suggest mainly late effects in the small intestine after this daily fractionated irradiation treatment. The reduced number of epithelial cells and the submucosal edema are possibly mediated by radiation injury in the intestinal microvasculature.  相似文献   

6.
The production and rejoining of DNA single-strand and double-strand breaks have been monitored in monolayer cultures of proliferating human skin fibroblasts by means of sensitive techniques. Cells were irradiated with low doses of either 60Co gamma-rays or 14.6 MeV neutrons at 0 degrees C (0-5 Gy for measurement of single-strand breaks by alkaline elution and 0-50 Gy for double-strand breaks measured by neutral elution). The yield of single-strand breaks induced by neutrons was 30 per cent of that produced by the same dose of gamma-rays; whilst in the induction of double-strand breaks neutrons were 1.6 times as effective as gamma-rays. Upon post-irradiation incubation of cells at 37 degrees C, neutron-induced single-strand and double-strand breaks were rejoined with a similar time-course to gamma-induced breaks. Rejoining followed biphasic kinetics; of the single-strand breaks, 50 per cent disappeared within 2 min after gamma-rays and 6-10 min after neutrons. Fifty per cent of the double-strand breaks disappeared within 10 min, after gamma-rays and neutrons. Cells derived from patients suffering from ataxia-telangiectasia showed the same capacity for repair of single- and double-strand breaks induced by 14.6 MeV neutrons, as cells established from normal donors. The comparison of neutrons and gamma-rays in the induction of DNA breaks did not explain the elevated r.b.e. on high LET radiation. However, a study of the variation in the spectrum of lesions induced by different radiation sources will probably contribute to the clarification of the relative importance of other radio products.  相似文献   

7.
Protection against whole body gamma-irradiation (WBI) of Swiss mice orally fed with Triphala (TPL), an Ayurvedic formulation, in terms of mortality of irradiated animals as well as DNA damage at cellular level has been investigated. It was found that radiation induced mortality was reduced by 60% in mice fed with TPL (1g/kg body weight/day) orally for 7 days prior to WBI at 7.5 Gy followed by post-irradiation feeding for 7 days. An increase in xanthine oxidoreductase activity and decrease in superoxide dismutase activity was observed in the intestine of mice exposed to WBI, which, however, reverted back to those levels of sham-irradiated controls, when animals were fed with TPL for 7 days prior to irradiation. These data have suggested the prevention of oxidative damage caused by whole body radiation exposure after feeding of animals with TPL. To further understand the mechanisms involved, the magnitude of DNA damage was studied by single cell gel electrophoresis (SCGE) in blood leukocytes and splenocytes obtained from either control animals or those fed with TPL for 7 days followed by irradiation. Compared to irradiated animals without administering TPL, the mean tail length was reduced about three-fold in blood leukocytes of animals fed with TPL prior to irradiation. Although, similar protection was observed in splenocytes of TPL fed animals, the magnitude of prevention of DNA damage was significantly higher than that observed in leukocytes. It has been concluded that TPL protected whole body irradiated mice and TPL induced protection was mediated through inhibition of oxidative damage in cells and organs. TPL seems to have potential to develop into a novel herbal radio-protector for practical applications.  相似文献   

8.
In experiments with (CBA x C57B1/6)F1 mice it was shown that LDH activity moderately increased 5 min after exposure of the head to 200 Gy gamma radiation. After 60 min, there was a 24.4 per cent decrease in alkaline phosphatase activity and a 24.3 per cent increase in SDG activity. Injected prior to irradiation meksamine precluded the postirradiation increase in SDH and alleviated the postirradiation decrease in alkaline phosphatase.  相似文献   

9.
Immunologic responses were studied in beagle dogs following prenatal (35 days gestation) irradiation to evaluate the effects of ionizing radiation on the developing immune system. Each dog received 1.5 Gy 60Co gamma irradiation or sham irradiation. Prenatally irradiated dogs exhibited a significant reduction in primary humoral antibody responses to inoculated sheep red blood cells, a T-dependent antigen, and a concurrent decrease in T-helper lymphocyte subpopulations in the peripheral blood at 3 to 4 months of age. Similarly, irradiated fetuses have been shown to have defects in epitheliostromal development of the thymus. It is suggested that the postnatal immunologic deficits may relate to the prenatal thymic injury.  相似文献   

10.
An animal model of pulmonary radiation fibrosis was established, using male CBA/j mice. Both lungs of each mouse in one group (DL) were irradiated with two doses of 8.5 Gy each, separated by 30 days. A control group (CG) was sham-irradiated. There was a small but significant difference (P less than 0.03) in average breathing rate between DL and CG 27 weeks after the second irradiation which increased until the 34th week followed by a plateau. The accumulated hydroxyproline content of the irradiated mouse lung was 40% greater (P less than 0.02) than that of the sham-irradiated lung at 42 weeks and thereafter. Anticollagen antibodies assayed 52 weeks after irradiation by enzyme-linked immunosorbent assay were elevated by 49% in sera from the irradiated mice compared to sera from sham-irradiated mice. Mortality during the 52-week period following the second irradiation was low (13%) for both groups. Histological comparison of irradiated and control mouse lungs fixed under uniform inflation pressure indicated no significant differences. The model has unique features including an increase in collagen deposition, no acute changes attributable to radiation, a small but statistically significant abnormality in pulmonary function, an immunologic response to collagen, and low mortality.  相似文献   

11.
Rate of glycolysis in vivo at different time intervals following 8 Gy [LD100(30)] whole body gamma radiation (WBGR) was evaluated by estimating liver glycogen, blood sugar, serum lactic dehydrogenase (LDH) and blood lactic acid concentration in adult male Sprague Dawley rats. Within 1 hr of radiation exposure, a significant fall in liver glycogen was observed in rats fed food and water ad libitum. The glycogen content increased after 24 hr and had returned to control level on 7th day after radiation exposure. Blood sugar, serum LDH and blood lactate levels increased significantly as compared to non irradiated controls. Pretreatment with 5-hydroxy-L-tryptophan (5-HTP; 100 mg/kg) + 2-aminoethylisothiuronium bromide hydrobromide (AET; 20 mg/kg) ip 30 min before 8 Gy WBGR, modified these values and restored them to normal level on 7th day post-irradiation.  相似文献   

12.
We investigated the effects of nonlethal gamma radiation on the metastatic potential of the murine tumor cell line, B16 melanoma. The ability of B16 cells to adhere to fibronectin, which is in part mediated by the alpha IIb beta 3 integrin receptor, is predictive of metastatic potential. We determined that exposure to 0.25-2.5 Gy gamma radiation significantly enhanced B16 cell adhesion to fibronectin. The radiation-enhanced adhesion was dependent on enhanced expression of the alpha IIb beta 3 integrin. We observed that 15 min after 0.5 Gy radiation, 99% of irradiated B16 tumor cells were positively labeled with monoclonal antibodies directed against alpha IIb beta 3 compared to 22% of sham-irradiated cells. Radiation-enhanced expression of the alpha IIb beta 3 receptor is reversible and down-regulation begins within 2-4 h postirradiation. Finally, we found that irradiation significantly enhanced the ability of B16 cells to form metastases in a lung colony assay. It is concluded that a relationship exists between radiation effects on the B16 tumor cells, alpha IIb beta 3 receptor expression, adhesion in vitro, and metastasis in vivo. We suggest that low-dose radiation, at levels comparable to those used in fractionated or hyperfractionated radiotherapy, may alter the metastatic phenotype and potential of surviving tumor cells via a rapid alteration in their surface expression of alpha IIb beta 3 integrin receptors.  相似文献   

13.
Strength of pulmonary vascular response to regional alveolar hypoxia.   总被引:1,自引:0,他引:1  
Regional alveolar hypoxia in the lung induces regional pulmonary vasoconstriction which diverts blood flow from the hypoxic area. However, the predominant determinant of the distribution of perfusion in the normal erect lung is gravity so that more perfusion occurs at the base than at the apex. To determine the strength of the regional alveolar hypoxic response in diverting flow with or against the gravity gradient a divided tracheal cannula was placed in anesthetized dogs and unilateral alveolar hypoxia created by venilating one lung with nitrogen while ventilating the other lung with oxygen to preserve normal systemic oxygentation. Scintigrams of the distribution of perfusion obtained with intravenous 13-N and the MGH positron camera revealed a 34 and 32 per cent decrease in perfusion to the hypoxic lung in the supine and erect positions and a 26 per cent decrease in the decubitus position with the hypoxic lung dependent (P equal to 0.94 from supine shift), indicating nearly equal vasoconstriction with shift of perfusion away from the hypoxic lung in all positions. Analysis of regional shifts in perfusion revealed an equal vasoconstrictor response from apex to base in the supine position but a greater response in the lower lung zones in the erect position where perfusion was also greatest.  相似文献   

14.
The aim of this study was to evaluate the early-delayed effects of a low dose of the gamma acute radiation syndrome (1.5 Gy) on memory and on dopaminergic and serotoninergic metabolism in Swiss albino CD1 mice, of various ages (6, 10 and 20 weeks). At different times after irradiation (from 24 hr to three months), the mice were trained in a single-trial passive avoidance task and tested for retention either 24 hr or 5 days later. Their performance was compared to that of mice that were sham-irradiated. At the end of the behavioral test (days 3, 9, 30 and 93), the concentrations of dopamine (DA) and serotonin (5HT) and their metabolites were determined in hippocampus, anterior cortex and striatum of mice irradiated at the age of six weeks. No significant behavioral effect was observed whichever the age of the animals or the delay of observation. On the contrary at the moderate dose of 4.5 Gy we observed a significant memory deficit 9 days after the exposure. Considering the neurochemical study, in the striatum or in the frontal cortex, no significant modification was observed whichever the delay or the molecule. In the hippocampus slight modifications were noted: an increase (+144%, p = 0.002) in DA level on day 3 after exposure, and a decrease (-27%, p = 0.028) of 5HT level on day 30 post-irradiation. These modifications were only transient and not associated to modifications of the catabolites. This study demonstrates that total-body exposure to gamma radiation at low dose seems to induce only slight effects on the central nervous system.  相似文献   

15.
The influence of whole-body irradiation with lethal doses of ionizing radiation (60Co) was studied in conventional, germ-free andEscherichia coli-monoassociated newborn piglets. The dose 1,200 R produced an acute intestinal death (i.e. within 3–4 days) in conventional animals, whereas survival was three times as long in their germ-free counterparts. Artificial colonization of the intestinal tract of germ-free piglets with non-pathogenic strain ofEscherichia coli, prior to irradiation with the same dose, produced the conventionalization of these animals and reduction in the survival time almost to the level of conventional animals. In conventional animals, profound focal regressive changes of the epithelium accompanying the denudation of intestinal villi were found already on the 2nd–3rd day after irradiation with 1,200 R. On the other hand, the intestinal epithelium of germ-free piglets, irradiated with 1,200 R, was found to be intact on the 7th–9th day of post-irradiation, and the first signs of damage started to occur around the 9–10th days. The morphological characteristics of the intestinal mucous membrane ofEscherichia coli-monoassociated piglets were comparable to those of conventional, irradiated piglets. The role of the presence of the microbial factor for the turnover and radiosensitivity-resistance of enterocytes, and for the survival-death rate of animals irradiated with doses producing the post-irradiation gastro-intestinal syndrome, is discussed.  相似文献   

16.
Summary The heads of rats were irradiated by 4 MeV electrons in doses 90, 180, and 360 Gy. The observed times of deaths ranged 120–600, 60–420, and 150–370 min after 90, 180, and 360 Gy, respectively. A dose dependent decrease of the brain uptake index of haloperidol was observed 1 and 3 h post radiation. On the other hand an increased brain uptake index was found for stobadin after head irradiation with doses of 180 and 360 Gy. Regional cerebral blood flow, blood pressure, and heart rate were not significantly altered in the period following irradiation with 180 Gy. The observed changes in blood-brain barrier (BBB) permeability seem to be the result of the damaged function of morphological structures forming the BBB rather than altered regional blood flow.  相似文献   

17.
The object of this study was to determine the effect of exposure to gamma radiation on potassium chloride (KCl)-stimulated release of dopamine (DA) in the striatum of the rat. In addition, the effect of some calcium channel blockers [nicardipine, a blocker of the L-type voltage-gated N-type VGCC; Omega-agatoxin TK, a selective blocker of P-type VGCC; and nickel chloride (NiCl(2)), which preferentially blocks the T-type VGCC] on KCl-stimulated release of DA in the striatum in sham-irradiated and irradiated rats was determined. Exposure of rats to 1-10 Gy (60)Co gamma rays had no significant effect on KCl-stimulated release of DA in the striatum in comparison to sham-irradiated animals. Administering 100, 300 and 500 nM of Omega-agatoxin TK or 50, 100 and 200 nM of Omega-conotoxin GVIA significantly decreased the release of DA stimulated by KCl in both irradiated and sham-irradiated animals in a dose-dependent manner. However, 10, 30 and 50 microM of nicardipine decreased the release of DA in irradiated animals but not in sham-irradiated animals. It is unknown why doses of 5-20 microM NiCl(2) had no effect on the release of DA in sham-irradiated and irradiated animals. The results demonstrate that the doses of radiation used in this study had no effect on release of DA in the striatum. Multiple calcium channel types coexist to regulate release of DA. P- and N-type VGCCs are involved in release of DA in sham-irradiated and irradiated animals, whereas only L-type VGCCs are involved in release of DA in irradiated animals.  相似文献   

18.
Severe xerostomia is a common late radiation consequence, which occurs after irradiation of head and neck malignancies. The aim of the present study was to analyze apoptosis and proliferation and their relationship during the late post-irradiation phase. C57BL/6 mice were locally irradiated in head and neck region with a single dose of 7.5 or 15 Gy and their submandibular glands were collected at 40 and 90 days after irradiation. To identify apoptotic cells, the TUNEL method was employed and immunohistochemistry with proliferating cell nuclear antigen (PCNA) was used for detecting proliferation. Histological changes at day 40 were mild in contrast to day 90 when glands of irradiated mice showed severe atrophy, vacuolization and mononuclear infiltration. Acinar cells, granular and intercalated duct cells of mice irradiated with 7.5 and 15 Gy expressed higher apoptotic index than cells of non-irradiated, control glands at both examined time points. At 40 days, a higher proliferation index in granular and intercalated duct cells was detected only in group irradiated with 7.5 Gy. At 90 days, proliferation index for all cell types in both irradiated groups was similar to the controls. According to our results, the imbalance between apoptosis and proliferation caused by X-irradiation may be the reason for gland impairment during the late post-irradiation phase.  相似文献   

19.
Estrofan (0.1 to 5 mg/kg) administered to rats and mice 5 min prior to gamma irradiation with doses of 8.5 to 9.5 Gy (LD90/30) increases the survival rate up to 30-40 per cent. The drug is ineffective when administered 30 and 60 min before irradiation.  相似文献   

20.
Thiol compounds, such as glutathione, 2,3-dimercaptopropanol (BAL), propane-1,3-dithiol, and N-phenylaminopropanedithiol, were readily oxidized by x-rays, beta rays, and gamma rays. The ionic yield for this oxidation was about the same, 3 at pH 7, on irradiation with x-rays and with beta rays; it was 23 per cent less on irradiation with gamma rays. The ionic yield varied with the hydrogen ion concentration, increasing as the pH value increased. There was no reduction of oxidized glutathione on irradiation with dosages of x-rays and gamma rays which produced oxidation of the reduced compound. In the absence of oxygen, the oxidation of thiols by ionizing radiations was only 33 per cent of that obtained in the presence of dissolved oxygen. When the thiol solutions were irradiated in the presence of dissolved oxygen, catalase protected them from oxidation by 17 to 27 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号