首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The equilibrium and kinetic behavior of the guanidine hydrochloride (Gdn-HCl) induced unfolding/refolding of four bovine pancreatic trypsin inhibitor (BPTI) mutants was examined by using ultraviolet difference spectroscopy. In three of the mutants, we replaced the buried 30-51 disulfide bond with alanine at position 51 and valine (Val30/Ala51), alanine (Ala30/Ala51), or threonine (Thr30/Ala51) at position 30. For the fourth mutant, the solvent-exposed 14-38 disulfide was substituted by a pair of alanines (Ala14/Ala38). All mutants retained the 5-55 disulfide. Experiments were performed under oxidizing conditions; thus, both the unfolded and folded forms retained two native disulfide bonds. Equilibrium experiments demonstrated that all four mutants were destabilized relative to wild-type BPTI. However, the stability of the 30-51 mutants increased with the hydrophobicity of the residue substituted at position 30. Kinetic experiments showed that all four mutants contained two minor slow refolding phases with characteristics of proline isomerization. The specific behavior of the phases depended on the location of the disulfide bonds. The major unfolding/refolding phase for each of the 30-51 mutants was more than an order of magnitude slower than for Ala14/Ala38 or for BPTI in which the 14-38 disulfide bond was specifically reduced and blocked with iodoacetamide [Jullien, M., & Baldwin, R. L. (1981) J. Mol. Biol. 145, 265-280]. Since this effect is independent of the stability of the protein, it is consistent with a model in which the proper docking of the interior residues of the protein is the rate-limiting step in the folding of these mutants.  相似文献   

3.
The three-dimensional structure of the N-terminal 51-residue domain of recombinant hirudin in aqueous solution was determined by 1H nuclear magnetic resonance (NMR) spectroscopy, and the resulting high-quality solution structure was compared with corresponding structures obtained from studies with the intact, 65-residue polypeptide chain of hirudin. On the basis of 580 distance constraints derived from nuclear Overhauser effects and 109 dihedral angle constraints, a group of 20 conformers representing the solution structure of hirudin(1-51) was computed with the program DIANA and energy-minimized with a modified version of the program AMBER. Residues 3 to 30 and 37 to 48 form a well-defined molecular core with two antiparallel beta-sheets composed of residues 14 to 16 and 20 to 22, and 27 to 31 and 36 to 40, and three reverse turns at residues 8 to 11 (type II), 17 to 20 (type II') and 23 to 26 (type II). The average root-mean-square deviation of the individual NMR conformers relative to their mean co-ordinates is 0.38 A for the backbone atoms and 0.77 A for all heavy atoms of these residues. Increased structural disorder was found for the N-terminal dipeptide segment, the loop at residues 31 to 36, and the C-terminal tripeptide segment. The solution structure of hirudin(1-51) has the same molecular architecture as the corresponding polypeptide segment in natural hirudin and recombinant desulfatohirudin. It is also closely similar to the crystal structure of the N-terminal 51-residue segment of hirudin in a hirudin-thrombin complex, with root-mean-square deviations of the crystal structure relative to the mean solution structure of 0.61 A for the backbone atoms and 0.91 A for all heavy atoms of residues 3 to 30 and 37 to 48. Further coincidence is found for the loop formed by residues 31 to 36, which shows increased structural disorder in all available solution structures of hirudin, and of which residues 32 to 35 are not observable in the electron density map of the thrombin complex. Significant local structural differences between hirudin(1-51) in solution and hirudin in the crystalline thrombin complex were identified mainly for the N-terminal tripeptide segment and residues 17 to 21. These are further analyzed in an accompanying paper.  相似文献   

4.
Hereditary fructose intolerance (HFI) is a potentially lethal inborn error in metabolism caused by mutations in the aldolase B gene, which is critical for gluconeogenesis and fructose metabolism. The most common mutation, which accounts for 53% of HFI alleles identified worldwide, results in substitution of Pro for Ala at position 149. Structural and functional investigations of human aldolase B with the A149P substitution (AP-aldolase) have shown that the mutation leads to losses in thermal stability, quaternary structure, and activity. X-ray crystallography is used to reveal the structural basis of these perturbations. Crystals of AP-aldolase are grown at two temperatures (4 degrees C and 18 degrees C), and the structure solved to 3.0 angstroms resolution, using the wild-type structure as the phasing model. The structures reveal that the single residue substitution, A149P, causes molecular disorder around the site of mutation (residues 148-159), which is propagated to three adjacent beta-strand and loop regions (residues 110-129, 189-199, 235-242). Disorder in the 110-129-loop region, which comprises one subunit-subunit interface, provides an explanation for the disrupted quaternary structure and thermal instability. Greater structural perturbation, particularly at a Glu189-Arg148 salt bridge in the active-site architecture, is observed in the structure determined at 18 degrees C, which could explain the temperature-dependent loss in activity. The disorder revealed in these structures is far greater than that predicted by homology modeling and underscores the difficulties in predicting perturbations of protein structure and function by homology modeling alone. The AP-aldolase structure reveals the molecular basis of a hereditary disease and represents one of only a few structures known for mutant proteins at the root of the thousands of other inherited disorders.  相似文献   

5.
Site-specific structural modification is a powerful tool for studying functional mechanisms in proteins where the structures may be manipulated by direct chemical modification, by selection of naturally-occurring mutants, or by site-directed mutagenesis. Here, we present a general strategy for such studies, which we term "mapping by structure-function perturbation." A series of functional perturbations (i.e., deviations of functional behavior from that of the native protein) are mapped against the structural locations of the modified sites, obtained over a range of locations. The modifications are treated as arbitrary perturbations of structure at specific locations, in contrast to the conventional approach of trying to interpret their local stereochemistry. The map yields information on structural locations of functional events and pathways of coupling within protein assemblies. We have applied this approach to the ligand-linked subunit assembly of human hemoglobin, using both chemically-modified heme sites (CN-met), and amino acid residues altered by mutation and chemical modification.  相似文献   

6.
C M Dupureur  B Z Yu  J A Mamone  M K Jain  M D Tsai 《Biochemistry》1992,31(43):10576-10583
The highly conserved phenylalanine-22 and phenylalanine-106, arranged as an aromatic sandwich, form part of an invariant hydrophobic wall that shields the active site of bovine pancreatic phospholipase A2 (PLA2) from bulk solvent [Dijkstra, B. W., Drenth, J., & Kalk, K. H. (1981) Nature 289, 604-606]. The residues have also been suggested to interact with the sn-2 acyl chain of bound phospholipid substrate [White, S. P., Scott, D. L., Otwinowski, Z., Gelb, M. H., & Sigler, P. B. (1990) Science 250, 1560-1563]. We now report the importance of these two residues in the structure and function of PLA2 in terms of aromaticity (changing to Ile) and hydrophobic (changing to Ala) and hydrophilic (changing to Tyr) character of these residues. The structural properties of the mutants were analyzed by proton NMR and by guanidine hydrochloride-induced denaturation. The functional properties were determined by measuring kinetic parameters toward various substrates in the forms of monomers, micelles, and vesicles, and by measuring equilibrium dissociation constants at the interface. The results show that (i) The conformational stability of each mutant was as good as that of wild-type PLA2; none of the mutants was significantly perturbed structurally as judged from detailed 1H NMR analysis. These results suggest that neither the Phe-22/Phe-106 face-to-face pair nor the Phe-22/Tyr-111 edge-to-face pair plays a significant structural role. (ii) Mutations to Ile at either position 22 or position 106 resulted in only minor perturbations in activity. This suggests that the aromaticity is not important to the function of these two residues.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
We have determined the thermodynamics of binding for the interaction between TEM-1 beta-lactamase and a set of alanine substituted contact residue mutants ofbeta-lactamase-inhibitory protein (BLIP) using isothermal titration calorimetry. The binding enthalpies for these interactions are highly temperature dependent, with negative binding heat capacity changes ranging from -800 to -271 cal mol(-1) K(-1). The isoenthalpic temperatures (at which the binding enthalpy is zero) of these interactions range from 5 to 38 degrees C. The changes in isoenthalpic temperature were used as an indicator of the changes in enthalpy and entropy driving forces, which in turn are related to hydrophobic and hydrophilic interactions. A contact residue of BLIP is categorized as a canonical residue if its alanine substitution mutant exhibits a change of isoenthalpic temperature matching the change of hydrophobicity because of the mutation. A contact position exhibiting a change in isoenthalpic temperature that does not match the change in hydrophobicity is categorized as an anti-canonical residue. Our experimental results reveal that the majority of residues where alanine substitution results in a loss of affinity are canonical (7 of 10), and about half of the residues where alanine substitutions have a minor effect are canonical. The interactions between TEM-1beta-lactamase and BLIP canonical contact residues contribute directly to binding free energy, suggesting potential anchoring sites for binding partners. The anti-canonical behavior of certain residues may be the result of mutation-induced modifications such as structural rearrangements affecting contact residue configurations. Structural inspection of BLIP suggests that the Lys(74) side chain electrostatically holds BLIP loop 2 in position to bind to TEM-1 beta-lactamase, explaining a large loss of entropy-driven binding energy of the K74A mutant and the resulting anti-canonical behavior. The anti-canonical behavior of the W150A mutant may also be due to structural rearrangements. Finally, the affinity enhancing effect of the contact residue mutant Y50A may be due to energetic coupling interactions between Asp(49) and His(41).  相似文献   

8.
We compared two different approaches to sequence information analysis from the expressed sequence tag (EST) library constructed for the venom glands of the spider Agelena orientalis. Some results were more illustrative and reliable by the contig analysis technique, whereas our novel method, with specific structural markers introduced for protein structure detection, allowed us to overcome some limitations of the contig analysis. A novel technique was suggested for the identification in data banks of the spider's ion channel inhibitor toxins using primary structure features common to all spiders. Analysis of about 150 polypeptides made it possible to introduce 3 primary structure motifs for spider toxins: the Principal Structural Motif (PSM), which postulates the existence of 6 amino acid residues between the first and second cysteine residue and the Cys-Cys sequence at a distance of 5-10 amino acid residues from the second cysteine; the Extra Structural Motif (ESM), which postulates the existence of a pair of CXC fragments in the C-region; and the Processing Quadruplet Motif (PQM), which specifies the Arg residue at position -1 and Glu residues at positions -2, -3, and/or -4 in the precursor sequences just before the postprocessing site. In the processed data bank we found 48 toxinlike structures with ion channel inhibitor motifs. These include agelenin earlier isolated from Agelena opulenta and 25 more homologous sequences, 15 homologs of mu-agatoxin 2 from the spider Agelenopsis aperta, 3 structures with low homology to omega-agatoxin-IIIA, and 4 new structures. Also we showed that toxinlike structures exceed two thirds of the overall database sequences.  相似文献   

9.
Here we determined NMR solution structures of two mutants of bovine pancreatic trypsin inhibitor (BPTI) to reveal structural reasons of their decreased thermodynamic stability. A point mutation, A16V, in the solvent-exposed loop destabilizes the protein by 20 degrees C, in contrast to marginal destabilization observed for G, S, R, L or W mutants. In the second mutant introduction of eight alanine residues at proteinase-contacting sites (residues 11, 13, 17, 18, 19, 34, 37 and 39) provides a protein that denatures at a temperature about 30 degrees C higher than expected from additive behavior of individual mutations. In order to efficiently determine structures of these variants, we applied a procedure that allows us to share data between regions unaffected by mutation(s). NOAH/DYANA and CNS programs were used for a rapid assignment of NOESY cross-peaks, structure calculations and refinement. The solution structure of the A16V mutant reveals no conformational change within the molecule, but shows close contacts between V16, I18 and G36/G37. Thus, the observed 4.3kcal/mol decrease of stability results from a strained local conformation of these residues caused by introduction of a beta-branched Val side-chain. Contrary to the A16V mutation, introduction of eight alanine residues produces significant conformational changes, manifested in over a 9A shift of the Y35 side-chain. This structural rearrangement provides about 6kcal/mol non-additive stabilization energy, compared to the mutant in which G37 and R39 are not mutated to alanine residues.  相似文献   

10.
A Pardi  A Galdes  J Florance  D Maniconte 《Biochemistry》1989,28(13):5494-5501
Two-dimensional NMR data have been used to generate solution structures of alpha-conotoxin G1, a potent peptide antagonist of the acetylcholine receptor. Structural information was obtained in the form of proton-proton internuclear distance constraints, and initial structures were produced with a distance geometry algorithm. Energetically more favorable structures were generated by using the distance geometry structures as input for a constrained energy minimization program. The results of both of these calculations indicate that the overall backbone conformation of the molecule is well-defined by the NMR data whereas the side-chain conformations are generally less well-defined. The main structural features derived from the NMR data were the presence of tight turns centered on residues Pro5 and Arg9. The solution structures are compared with previous proposed models of conotoxin G1, and the NMR data are interpreted in conjunction with chemical modification studies and structural properties of other antagonists of the acetylcholine receptor to gain insight into structure-activity relationships in these peptide toxins.  相似文献   

11.
Serotype-specific polysaccharide antigens from Actinobacillus actinomycetemcomitans ATCC 29523 (serotype a) and NCTC 9710 (serotype c) were extracted from whole cells by autoclaving and purified by ion-exchange chromatography and gel filtration. Analysis of component sugars by gas-liquid chromatography-mass spectrometry, high performance liquid chromatography, and NMR together with optical rotation data showed that the serotype a antigen was composed solely of 6-deoxy-D-talose, whereas the serotype c antigen consisted of 6-deoxy-L-talose. Structural analysis indicated that both of these antigens were composed of closely related repeating units, -3)-6-deoxy-alpha-D-Talp-(1-2)-6-deoxy-alpha-D-Talp-(1-(sero type a) and -3)-6-deoxy-alpha-L-Talp-(1-2)-6-deoxy-alpha-L-Talp-(1-(sero type c). 1H and 13C NMR analysis showed that both of these serotype antigens contained one acetyl group/2 sugar residues. These acetyl groups localized at the O-2 position of 3-linked 6-deoxy-D-talose (serotype a) or O-4 position of 3-linked 6-deoxy-L-talose residues (serotype c), respectively. These results coupled with our previous findings on the serotype b antigen (Amano, K., Nishihara, T., Shibuya, N., Noguchi, T., and Koga, T. (1989) Infect. Immun. 57, 2942-2946) showed that the serotype antigens from A. actinomycetemcomitans are a group of novel polysaccharides with structural features closely related biosynthetically.  相似文献   

12.
In the accompanying paper (Bendiak et al., 1989), the separation of a series of oligosaccharides released from asparagine residues of fetuin was described. A series of NMR experiments, which included one- and two-dimensional nuclear Overhauser enhancement, two-dimensional correlation spectroscopy, and two-dimensional relayed-coherence spectroscopy, as well as permethylation analyses, established a Gal beta 1----3(NeuAc alpha 2----6)GlcNAc beta 1----4Man unit common to a series of purified structures. These oligosaccharides contained either three, four, or five glycosidically linked sialic acid residues. The NeuAc residue in alpha 2----6 linkage to GlcNAc gives rise to diagnostic chemical shift perturbations of particular proton signals in the oligosaccharides.  相似文献   

13.
Structural studies of protein-ligand complexes are often limited by low solubility, poor affinity, and interfacial motion and, in NMR structures, by the lack of intermolecular NOEs. In the absence of other structural restraints, we use a procedure that compares simulated chemical shift perturbations to observed perturbations to better define the binding orientation of ligands with respect to protein surfaces.  相似文献   

14.
The Na(+)/H(+) exchanger isoform 1 is an integral membrane protein that regulates intracellular pH by exchanging one intracellular H(+) for one extracellular Na(+). It is composed of an N-terminal membrane domain of 12 transmembrane segments and an intracellular C-terminal regulatory domain. We characterized the structural and functional aspects of the critical transmembrane segment VII (TM VII, residues 251-273) by using alanine scanning mutagenesis and high resolution NMR. Each residue of TM VII was mutated to alanine, the full-length protein expressed, and its activity characterized. TM VII was sensitive to mutation. Mutations at 13 of 22 residues resulted in severely reduced activity, whereas other mutants exhibited varying degrees of decreases in activity. The impaired activities sometimes resulted from low expression and/or low surface targeting. Three of the alanine scanning mutant proteins displayed increased, and two displayed decreased resistance to the Na(+)/H(+) exchanger isoform 1 inhibitor EMD87580. The structure of a peptide of TM VII was determined by using high resolution NMR in dodecylphosphocholine micelles. TM VII is predominantly alpha-helical, with a break in the helix at the functionally critical residues Gly(261)-Glu(262). The relative positions and orientations of the N- and C-terminal helical segments are seen to vary about this extended segment in the ensemble of NMR structures. Our results show that TM VII is a critical transmembrane segment structured as an interrupted helix, with several residues that are essential to both protein function and sensitivity to inhibition.  相似文献   

15.
Teichoic acids are a major constituent of the cell wall of Gram-positive bacteria. Structural characterization of lipoteichoic and teichoic acids isolated from Lactobacillus brevis was undertaken using 1D and 2D NMR experiments as well as chemical methodology. Compositional analysis indicated the presence of high amounts of glycerol, glucose, and alanine. In the case of LTA octadecenoic acid was also detected. The basic LTA/WTA structure was identified as 1,3-poly(glycerol phosphate) nonstoichiometrically substituted at C-2 of the glycerol residues with d-Ala or α-d-Glc. In the case of LTA a higher amount of Ala could be detected and partial alanylation at position C-6 of the Glc could also be observed.  相似文献   

16.
Fetrow JS  Knutson ST  Edgell MH 《Proteins》2006,63(2):356-372
Eglin c is a small protease inhibitor whose structural and thermodynamic properties have been well studied. Previous thermodynamic measurements on mutants at solvent-accessible positions in the protein's helix have shown the unexpected result that the data could be best fit by the inclusion of residue- and position-specific parameters to the model. To explore the origins of this surprising result, long molecular dynamics simulations in explicit solvent have been performed. These simulations indicate specific long-range interactions between the solvent-exposed residues in the eglin c alpha-helix and binding loop, an unexpected observation for such a small protein. The residues involved in the interaction are on opposite sides of the protein, about 25 A apart. Simulations of alanine substitutions at the solvent-exposed helix positions, arginine 22, glutamic acid 23, threonine 26, and leucine 27, show both small and large perturbations of eglin c dynamics. Two mutations exhibit large impacts on the long-range helix-loop interactions. Previous stability measurements (Yi et al., Biochemistry 2003;42:7594-7603) had indicated that an alanine substitution at position 27 was less stabilizing than at other solvent-exposed positions in the helix. The L27A mutation effects observed in these simulations suggest that the position-dependent loss of stability measured in wet bench experiments is derived from changes in dynamics that involve long-range interactions; thus, these simulations support the hypothesis that solvent-exposed positions in helices are not always equivalent.  相似文献   

17.
In the folding of bovine pancreatic trypsin inhibitor (BPTI), the single-disulfide intermediate [30-51] plays a key role. We have investigated a recombinant analog of [30-51] using a 2-dimensional nuclear magnetic resonance (2D-NMR). This recombinant analog, named [30-51]Ala, contains a disulfide bond between Cys-30 and Cys-51, but contains alanine in place of the other cysteines in BPTI to prevent the formation of other intermediates. By 2D-NMR, [30-51]Ala consists of 2 regions-one folded and one predominantly unfolded. The folded region resembles a previously characterized peptide model of [30-51], named P alpha P beta, that contains a native-like subdomain with tertiary packing. The unfolded region includes the first 14 N-terminal residues of [30-51] and is as unfolded as an isolated peptide containing these residues. Using protein dissection, we demonstrate that the folded and unfolded regions of [30-51]Ala are structurally independent. The partially folded structure of [30-51]Ala explains many of the properties of authentic [30-51] in the folding pathway of BPTI. Moreover, direct structural characterization of [30-51]Ala has revealed that a crucial step in the folding pathway of BPTI coincides with the formation of a native-like subdomain, supporting models for protein folding that emphasize the formation of cooperatively folded subdomains.  相似文献   

18.
The solution structure of reactive-site hydrolyzed Cucurbita maxima trypsin inhibitor III (CMTI-III*) was investigated by two-dimensional proton nuclear magnetic resonance (2D NMR) spectroscopy. CMTI-III*, prepared by reacting CMTI-III with trypsin which cleaved the Arg5-Ile6 peptide bond, had the two fragments held together by a disulfide linkage. Sequence-specific 1H NMR resonance assignments were made for all the 29 amino acid residues of the protein. The secondary structure of CMTI-III*, as deduced from NOESY cross peaks and identification of slowly exchanging hydrogens, contains two turns (residues 8-12 and 24-27), a 3(10)-helix (residues 13-16), and a triple-stranded beta-sheet (residues 8-10, 29-27, and 21-25). This secondary structure is similar to that of CMTI-I [Holak, T. A., Gondol, D., Otlewski, J., & Wilusz, T. (1989) J. Mol. Biol. 210, 635-648], which has a Glu instead of a Lys at position 9. Sequential proton assignments were also made for the virgin inhibitor, CMTI-III, at pH 4.71, 30 degrees C. Comparison of backbone hydrogen chemical shifts of CMTI-III and CMTI-III* revealed significant changes for residues located far away from the reactive-site region as well as for those located near it, indicating tertiary structural changes that are transmitted through most of the 29 residues of the inhibitor protein. Many of these residues are functionally important in that they make contact with atoms of the enzyme in the trypsin-inhibitor complex, as revealed by X-ray crystallography [Bode, W., Greyling, H. J., Huber, R., Otlewski, J., & Wilusz, T. (1989) FEBS Lett. 242, 285-292].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Structural genomics projects are providing large quantities of new 3D structural data for proteins. To monitor the quality of these data, we have developed the protein structure validation software suite (PSVS), for assessment of protein structures generated by NMR or X-ray crystallographic methods. PSVS is broadly applicable for structure quality assessment in structural biology projects. The software integrates under a single interface analyses from several widely-used structure quality evaluation tools, including PROCHECK (Laskowski et al., J Appl Crystallog 1993;26:283-291), MolProbity (Lovell et al., Proteins 2003;50:437-450), Verify3D (Luthy et al., Nature 1992;356:83-85), ProsaII (Sippl, Proteins 1993;17: 355-362), the PDB validation software, and various structure-validation tools developed in our own laboratory. PSVS provides standard constraint analyses, statistics on goodness-of-fit between structures and experimental data, and knowledge-based structure quality scores in standardized format suitable for database integration. The analysis provides both global and site-specific measures of protein structure quality. Global quality measures are reported as Z scores, based on calibration with a set of high-resolution X-ray crystal structures. PSVS is particularly useful in assessing protein structures determined by NMR methods, but is also valuable for assessing X-ray crystal structures or homology models. Using these tools, we assessed protein structures generated by the Northeast Structural Genomics Consortium and other international structural genomics projects, over a 5-year period. Protein structures produced from structural genomics projects exhibit quality score distributions similar to those of structures produced in traditional structural biology projects during the same time period. However, while some NMR structures have structure quality scores similar to those seen in higher-resolution X-ray crystal structures, the majority of NMR structures have lower scores. Potential reasons for this "structure quality score gap" between NMR and X-ray crystal structures are discussed.  相似文献   

20.
Glacontryphan-M, a novel calcium-dependent inhibitor of L-type voltage-gated Ca(2+) channels expressed in mouse pancreatic beta-cells, was recently isolated from the venom of the cone snail Conus marmoreus (Hansson, K., Ma, X., Eliasson, L., Czerwiec, E., Furie, B., Furie, B. C., Rorsman, P., and Stenflo, J. (2004) J. Biol. Chem. 278, 32453-32463). The conserved disulfide-bonded loop of the contryphan family of conotoxins including a D-Trp is present; however, unique to glacontryphan-M is a histidine within the intercysteine-loop and two gamma-carboxyglutamic acid (Gla) residues, formed by post-translational modification of glutamic acid. The two calcium-binding Gla residues are located in a four residue N-terminal extension of this contryphan. To better understand the structural and functional significance of these residues, we have determined the structure of glacontryphan-M using two-dimensional (1)H NMR spectroscopy in the absence and presence of calcium. Comparisons of the glacontryphan-M structures reveal that calcium binding induces structural perturbations within the Gla-containing N terminus and the Cys(11)-Cys(5)-Pro(6) region of the intercysteine loop. The backbone of N-terminal residues perturbed by calcium, Gla(2) and Ser(3), moves away from the His(8) and Trp(10) aromatic rings and the alignment of the D-Trp(7) and His(8) aromatic rings with respect to the Trp(10) rings is altered. The blockage of L-type voltage-gated Ca(2+) channel currents by glacontryphan-M requires calcium binding to N-terminal Gla residues, where presumably histidine and tryptophan may be accessible for interaction with the channel. The backbone C alpha conformation of the intercysteine loop of calcium-bound glacontryphan-M superimposes on known structures of contryphan-R and Vn (0.83 and 0.66 A, respectively). Taken together these data identify that glacontryphan-M possesses the canonical contryphan intercysteine loop structure, yet possesses critical determinants necessary for a calcium-induced functionally required conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号