首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doryaspis groenhorgensis nov. sp. is a new pteraspidiform from the lower devonian of Spitsbergen. The genus Doryaspis is now considered as the most abundant pteraspidiform of the Wood Bay formation, with five described species. Moreover, the pteraspidiform diversity of this formation has been under rated all along the XXth century. A morpho-functional analysis of the Doryaspis generic characters (e.g. flat dorsal shield, ventral pseudorostrum, long cornual plates) allows to consider two possible mode of life. However, none of the pelagic or benthic mode of life is better supported than the other. The same analysis introduce some interpretative hypothesis on histology and moving of the Pteraspidiformes. The Pteraspidiformes diversity of Spitsbergen is important for further Devonian circum-arctic comparisons (e.g. siberian platform).  相似文献   

2.
The position of lithic industries of Chinese Paleolithic in comparison with those of other regions in the world is always a controversial topic. The typological analysis has made Chinese prehistorians reveal some variability between lithic industries of different regions of China in terms of technical tradition and industrial structure. But this recognition, based upon some morphological characters of stone artifacts, failed to define systematically the modes of production that exist in each site. To answer these problematic some new methods need to be applied. So the lithic materials from 8 Chinese sites dated from 300 ka to 50 ka B.P. were selected and analyzed by means of lithic technological analysis and a new approach for analyzing the structures of cores. This paper presents principally the analytical results of modes of débitage and revealed that the modes of débitage during this period were characterized essentially by system C (“simple débitage”) and E (discoid) and that the concept Levallois was absent during this period in technical systems of lithic production in China. The Chinese lithic industries between 300 ka and 50 ka B.P. saw some homogeneity in the scale of the continent and remarkable difference from those of other regions in the world. So a stable, continuous but independent even isolated evolution in comparison with those of other regions was observed in this period. In addition, despite of apparent homogeneity, some variability exists also between these industries.  相似文献   

3.
This study examines the positional and activity behavior of a captive slow loris, Nycticebus coucang. The male individual was housed in a primate facility providing a seminatural environment and was subjected to a series of videotape recordings from which 1,878 point observations were taken. The enclosure was designed to allow maximum flexibility of substrate use. Quantitative information detailing activity, positional mode, and substrate geometry was collected using a checklist of 15 variables. Data were tabulated and compared as frequency distributions to describe activity budgets, the use of locomotor and postural modes, and the relation of posture to activity behavior and substrate geometry. The results indicated that almost 90% of the active day may be devoted to behaviors directly or indirectly related to dietary functions. For locomotor behavior, both climbing and walking were associated with the use of diagonal couplets. The loris devoted 52% of its positional behavior to postural modes, favoring the quadrupedal stand, triplets, and sitting. Suspension was found to be used more often in posture than locomotion. Overall, the loris's repertory of positional modes accommodated a wide range of substrate geometries.  相似文献   

4.
The Messinian is one of the strongest biogenic silica accumulation periods in the world and more particularly in the Mediterranean, where it is marked by an important diatomitic sedimentation. In the Boudinar basin (Morocco north-Eastern, Western Mediterranean), the section of Sidi Haj Youssef, localised near the volcano of Ras Tarf, has approximately 100 m thickness of clayey-marly series in which 12 diatomitic levels of variable thickness are intercalated. The microfloristic study of diatoms on 86 samples, carried out in detail for the first time, made it possible to recognize 50 genus of diatoms (24 of centric and 26 of pennate) represented by 185 species (75 species of centric and 110 species of pennate). Four hundred individuals were taken from each sample to determine the relative frequency of each taxon within the diatoms assemblages. Thus, several assemblages were defined by the predominance of the following species: Coscinodiscusmarginatus, Actinoptychussenarius, Thalassionemanitzschioides, Actinocycluscurvatulus, Thalassiothrixlongissima, Rhizosoleniastyliformis and Actinocyclusehrenbergii. These diatoms assemblages display a littoral marine environment in communication with the opened sea. The abundance of the cold water species towards the base and the top of the section suggests broad exchanges of the basin with the Atlantic Ocean in Messinian. The predominance of the species Thalassionemanitzschioides and/or Thalassiothrixlongissima indicates periods of strong productivity that can be associated to upwelling systems.  相似文献   

5.
Evolutionary transitions between quadrupedal and bipedal postures are pivotal to the diversification of amniotes on land, including in our own lineage (Hominini). Heterochrony is suggested as a macroevolutionary mechanism for postural transitions but understanding postural evolution in deep time is hindered by a lack of methods for inferring posture in extinct species. Dinosaurs are an excellent natural laboratory for understanding postural transitions because they demonstrate at least four instances of quadrupedality evolving from bipedality, and heterochronic processes have been put forward as an explanatory model for these transitions. We extend a quantitative method for reliably inferring posture in tetrapods to the study of ontogenetic postural transitions using measurements of proportional limb robusticity. We apply this to ontogenetic series of living and extinct amniotes, focusing on dinosaurs. Our method correctly predicts the general pattern of ontogenetic conservation of quadrupedal and bipedal postures in many living amniote species and infers the same pattern in some dinosaurs. Furthermore, it correctly predicts the ontogenetic postural shift from quadrupedal crawling to bipedal walking in humans. We also infer a transition from early ontogenetic quadrupedality to late-ontogenetic bipedality in the transitional sauropodomorph dinosaur Mussaurus patagonicus and possibly in the early branching ceratopsian Psittacosaurus lujiatunensis but not in the sauropodomorph Massospondylus carinatus. The phylogenetic positions of these ontogenetic shifts suggest that heterochrony may play a role in the macroevolution of posture, at least in dinosaurs. Our method has substantial potential for testing evolutionary transitions between locomotor modes, especially in elucidating the role of evolutionary mechanisms like heterochrony.  相似文献   

6.
A quantification of the aging of a system is achieved by establishing a metric algebra based upon the dissipation function associated with the system. The phenomenological coefficient, Lij, of irreversible thermodynamics is shown to be a dynamical analogue of the metric tensor, gij, of geometry. Given this metric for aging systems, it then becomes possible to compare the aging of two similar systems exposed to different environmental forces and to use the concept of age-preserving transformations to determine under what conditions two different systems will age at the same rate.  相似文献   

7.
It was earlier shown that ultraslow tilts of the support under quiet standing conditions evoke an unusual response reflecting the operation of compensatory mechanisms: postural sway is a superposition of postural oscillations typical of quiet standing and greater, slower inclinations of the body caused by the tilt. This may be explained by the presence of two hierarchical levels of upright posture control: real-time control compensates for small deviations of the body from the reference posture prescribed by presetting control. Mathematical simulation methods have been used to study the mechanisms of reference posture control. The results are compared with available experimental data. It is demonstrated that the reference posture can be corrected according to the gravitational vertical with the use of a kinesthetic reference alone. It is hypothesized that, when correcting the reference posture, the nervous system “assumes” the support to be immobile. The afferent input from sole pressure receptors is an important factor in reference posture correction. The advantages of the putative two-level control over control based on an explicit internal model are discussed.  相似文献   

8.
Quiet standing is a mechanically unstable postural objective that humans typically perform with ease. Control of upright posture requires stabilization of both translational and rotational degrees-of-freedom that is accomplished by neuro-muscular coordination. This coordination produces a force at the ground-foot interface (F) that is quantified by magnitude, direction (θF), and point of application (center-of-pressure, CP). Previous research has shown that the nervous system controls muscle activation such that CP motion occurs at both slow and fast time scales. However, it is unknown how θF varies with respect to CP and how that relationship varies across time scales. We present a novel method for assessing the frequency-dependent relative variation in θF and CP. The center-of-pressure (CP) and direction of the ground-on-foot force (F) in the sagittal-plane during quiet standing were decomposed into 0.2 Hz-width frequency bands within 0.4–8.0 Hz. The relation between the direction and CP was approximately linear with a slope positively related to frequency. These frequency-dependent features of F have critical implications for understanding balance strategy because the translational and rotational acceleration effects of F were coupled, but with opposite phasing at high versus low frequencies. Such results suggest a system tuned for one stability mode at low frequencies and another mode at higher frequencies. This frequency-wise approach to examining the translational and rotational effects of humans’ preferred F may be useful for establishing balance rehabilitation metrics, directing study of the underlying neural mechanisms responsible for the observed coordination, and for setting a biometric standard to inform biomimetic prosthetics and robotics.  相似文献   

9.
Found in Chiapas (South-East of Mexico), Praealveolina michaudi nov. sp. and Chubbina jamaicensis (of Campanian-Maestrichtian age) are described, both evolved from Nummoloculina sp. while Raadshoovenia guatemalensis (upper Paleocene-lower Eocene) arises from Quinqueloculina. We precisely analyze and modelize the nepionic coiling during the evolutionary change from Miliolacea to Alveolinacea. During ontogenesis as well as during phylogenesis, quinqueloculine coiling progresses to streptospiral and then to planispiral chamber arrangement with the increase of volume of embryo and of chambers. Appearance of these large foraminifers are understood as a consequence of the rise of K-strategies in their mode of life, following the development of photosynthetic symbioses.  相似文献   

10.
The Interactive Balance System (IBS), a posturography device for assessing posture control, is widely used in clinical and rehabilitation settings. However, data on the validity of the device are unavailable. Fluctuations of the center of pressure (COP) were measured in 24 healthy participants (age: 29 ± 5 (mean ± SD) years, 12 females) synchronously using the IBS, which was rigidly mounted on a Kistler platform. Four different bipedal conditions were examined: eyes open or closed on stable or soft surfaces. Time series were compared using congruity (CON, proportion of the measurement time during which values of both devices changed similarly in direction), whereas IBS-specific postural outcomes were correlated with traditional postural control outcomes of the Kistler force platform. The time-displacement curves showed similar shapes for CON (>0.9) for each of the four standing conditions without differences between male and female participants (P > 0.39). The path length results of both devices showed very high linear associations, explaining on average 92% (medio-lateral) or 96% (anterior-posterior) of the common variance. The Kistler path length of the anterior-posterior direction revealed nearly perfect linear associations with the stability index of the IBS (r2 > 0.99). The results of this study indicate that the IBS provides valid posturographic results. Since the medial-lateral and anterior-posterior trajectories of the IBS can be used to calculate COP fluctuations, comparisons between different measurement systems are possible.  相似文献   

11.
A recurring problem in population biology - as well as other stochastic dynamical systems in biology, the physical and social sciences - is the distinction between the ‘true’ dynamics of a system and observational noise: i.e. can we from present data reliably infer e.g. biological mechanisms, or are signals swamped by noise.Here, we approach this problem using the canonical model for simple systems that exhibit complex behaviour, the logistic map. At each time-point noise is added, which allows us to study the long-term behaviour of a system which exhibits both non-linear dynamics and intrinsic noise.We show that the interplay between deterministic non-linear dynamics and simple Gaussian noise results in a perplexingly simple system when viewed statistically.In particular we show that for the case of Gaussian noise it is possible to derive at very reliable approximations for the time until the system has reached an absorbing state. This generic model allows us, for example, to study the life-time of molecular species involved in noisy feedback loops.  相似文献   

12.
 We investigate the temporal coordination of human gait and posture and infer the nature of their coupling. Participants viewed a sinusoidally oscillating visual display which induced medial-lateral postural sway during treadmill walking, while display frequency was varied (0.075–1.025 Hz). First, postural responses exhibited the usual low-pass characteristic but with an additional resonance peak near the preferred stride frequency, although shifted downward by 0.12 Hz; this provides evidence of a coupling from gait to posture. Second, the step cycle adapted to mode lock with the visual driver and postural sway, as well as displaying instances of intermittency (slipping in and out of phase) and quasiperiodicity (phase wandering); this provides evidence of a coupling from posture to gait. We observed a spectrum of integer mode locks, including a large 1:1 trapping region about the stride frequency and superharmonic entrainment (stride frequency > driver frequency) at lower driver frequencies. A coupled-oscillator model that incorporates a novel parametric coupling from posture to the gait “stiffness” term reproduces these features of the data, including the resonance peak shift. Biological coordination patterns may thus emerge naturally as properties of a system of appropriately coupled oscillators. Received: 23 June 1999 / Accepted in revised form: 10 January 2001  相似文献   

13.
In the instantaneous normal mode method, normal mode analysis is performed at instantaneous configurations of a condensed-phase system, leading to modes with negative eigenvalues. These negative modes provide a means of characterizing local anharmonicities of the potential energy surface. Here, we apply instantaneous normal mode to analyze temperature-dependent diffusive dynamics in molecular dynamics simulations of a small protein (a scorpion toxin). Those characteristics of the negative modes are determined that correlate with the dynamical (or glass) transition behavior of the protein, as manifested as an increase in the gradient with T of the average atomic mean-square displacement at ∼220 K. The number of negative eigenvalues shows no transition with temperature. Further, although filtering the negative modes to retain only those with eigenvectors corresponding to double-well potentials does reveal a transition in the hydration water, again, no transition in the protein is seen. However, additional filtering of the protein double-well modes, so as to retain only those that, on energy minimization, escape to different regions of configurational space, finally leads to clear protein dynamical transition behavior. Partial minimization of instantaneous configurations is also found to remove nondiffusive imaginary modes. In summary, examination of the form of negative instantaneous normal modes is shown to furnish a physical picture of local diffusive dynamics accompanying the protein glass transition.  相似文献   

14.
In Tunisia, in the platform domain, the Aptian-Albian transition is associated with a major stratigraphic gap not precisely dated, which is related to the subaerial exposure of the Aptian Orbata platform. Locally, in central Tunisia (Jebel Kebar), this gap is substituted by the sedimentary records of the Kebar Formation. This formation provided a rich association of fossil charophytes, formed by Atopochara trivolvis trivolvis, Clavator harrisii zavialensis and Sphaerochara verticillata which allows attributing it to the late Aptian–early Albian interval (most probably early Albian). In addition, a new variety, Sphaerochara verticillata var. kebariensis, is described. The charophyte assemblage shows significant biogeographic affinities with a coeval flora found in the Iberian Peninsula. The Kebar Formation was previously regarded as exclusively nonmarine, but the presence of the assemblage of charophytes and associated ostracods described rather indicates a fluctuation between margino-littoral (lagoonal) and continental environments.  相似文献   

15.
Impaired sensory, motor and central processing systems combining with biomechanical changes are risk of fall factors in the elderly population. The aim of this study was to assess the auto-adaptation and the regulation of the dynamic control of equilibrium in age-related adaptive strategies, by using a seated position on a seesaw. 15 young adults and 12 healthy middle-aged adults were asked to actively maintain a sitting posture as stable as possible during 12.8 s, on a 1-degree of freedom seesaw (auto-stabilization paradigm), with and without vision. The seesaw was placed in order to allow roll or pitch oscillations. We determine length and surfaces CoP shifts, mean positions and variability, a Postural Performance Index (PI) and a Strategy Organization Ratio (SOR). Our results shows that adopted strategies are plane-dependant during auto-stabilization (parallel and perpendicular axes control is impacted) and age-dependant. PIx during roll seated auto-stabilization tasks appears as the most relevant parameter of aged-related instability. The visual effect, during pitch auto-stabilization, characterizes the postural sensory-motor human behavior. The quantitative and qualitative postural assessment, thanks to seated auto-stabilization task, need to be promoted for long-term health care and probably for the rehabilitation of various disorders.  相似文献   

16.
Cholera is a water and food borne infectious disease caused by the gram-negative bacterium, Vibrio cholerae. Its dynamics are highly complex owing to the coupling among multiple transmission pathways and different factors in pathogen ecology. Although various mathematical models and clinical studies published in recent years have made important contribution to cholera epidemiology, our knowledge of the disease mechanism remains incomplete at present, largely due to the limited understanding of the dynamics of cholera. In this paper, we conduct global stability analysis for several deterministic cholera epidemic models. These models, incorporating both human population and pathogen V. cholerae concentration, constitute four-dimensional non-linear autonomous systems where the classical Poincaré-Bendixson theory is not applicable. We employ three different techniques, including the monotone dynamical systems, the geometric approach, and Lyapunov functions, to investigate the endemic global stability for several biologically important cases. The analysis and results presented in this paper make building blocks towards a comprehensive study and deeper understanding of the fundamental mechanism in cholera dynamics.  相似文献   

17.
This paper investigated the organization of the postural control system in human upright stance. To this aim the shared variance between joint and 3D total body center of mass (COM) motions was analyzed using multivariate canonical correlation analysis (CCA). The CCA was performed as a function of established models of postural control that varied in their joint degrees of freedom (DOF), namely, an inverted pendulum ankle model (2DOF), ankle-hip model (4DOF), ankle-knee-hip model (5DOF), and ankle-knee-hip-neck model (7DOF). Healthy young adults performed various postural tasks (two-leg and one-leg quiet stances, voluntary AP and ML sway) on a foam and rigid surface of support. Based on CCA model selection procedures, the amount of shared variance between joint and 3D COM motions and the cross-loading patterns we provide direct evidence of the contribution of multi-DOF postural control mechanisms to human balance. The direct model fitting of CCA showed that incrementing the DOFs in the model through to 7DOF was associated with progressively enhanced shared variance with COM motion. In the 7DOF model, the first canonical function revealed more active involvement of all joints during more challenging one leg stances and dynamic posture tasks. Furthermore, the shared variance was enhanced during the dynamic posture conditions, consistent with a reduction of dimension. This set of outcomes shows directly the degeneracy of multivariate joint regulation in postural control that is influenced by stance and surface of support conditions.  相似文献   

18.
Human subjects standing in a sinusoidally moving visual environment display postural sway with characteristic dynamical properties. We analyzed the spatiotemporal properties of this sway in an experiment in which the frequency of the visual motion was varied. We found a constant gain near 1, which implies that the sway motion matches the spatial parameters of the visual motion for a large range of frequencies. A linear dynamical model with constant parameters was compared quantitatively with the data. Its failure to describe correctly the spatiotemporal properties of the system led us to consider adaptive and nonlinear models. To differentiate between possible alternative structures we directly fitted nonlinear differential equations to the sway and visual motion trajectories on a trial-by-trial basis. We found that the eigenfrequency of the fitted model adapts strongly to the visual motion frequency. The damping coefficient decreases with increasing frequency. This indicates that the system destabilizes its postural state in the inertial frame. This leads to a faster internal dynamics which is capable of synchronizing posture with fast-moving visual environments. Using an algorithm which allows the identification of essentially nonlinear terms of the dynamics we found small nonlinear contributions. These nonlinearities are not consistent with a limit-cycle dynamics, accounting for the robustness of the amplitude of postural sway against frequency variations. We interpret our results in terms of active generation of postural sway specified by sensory information. We derive also a number of conclusions for a behavior-oriented analysis of the postural system.  相似文献   

19.
20.
Biostratigraphical high-resolution analyses and quantitative data confirm that deposition is continuous across the K-Pg transition in several sections in Tunisia (El Kef, stratotype section) and Spain (Agost and Caravaca sections) located in the Tethyan realm and the Bidart sections in the Atlantic realm, without any relevant hiatus. The Upper Maastrichtian assemblages of planktic foraminifera from these sections are largely dominated by small biserial heterohelicids. They are associated to common species having planispiral test (i.e. globigerinelloids), trochospiral test (i.e. hedbergellids, rugoglobigerinids globotruncanids), to rare triserial heterohelicids (i.e. guembelitriids) and trochospiral species showing tubulospines (i.e. schackoinids). Stratigraphical ranges of these diverse taxa through the late Maastrichtian in the Tethyan and Atlantic realms show very few changes in the planktonic foraminiferal assemblages and most of the species are present in the Abathomphalus mayaroensis biozone. By our high-resolution sampling and the intensive research for the A. mayaroensis index species in the uppermost Maastrichtian samples, we confirm that this species is omnipresent up to the top of the Maastrichtian. Therefore, A. mayaroensis is present in almost all samples which are late Maastrichtian in age, but this species became very scarce in the uppermost Maastrichtian samples. This scarceness could be due to a climate cooling. A sharp decrease in relative abundance of the deep dwellers species, like as Abathomphalus intermedius and A. mayaroensis as well as in other keeled globotruncanids is observed at the studied sections from the Tethyan realm (indicative of low latitude) across the latest Maastrichtian. At the K/Pg boundary, all the globotruncanids disappeared. They are considered specialists living in tropical-subtropical deep seawater habitat. At this boundary, large and ornate heterohelicids also disappeared. Therefore, all the studied sections show that about 90 % of the Maastrichtian species became extinct according to a catastrophic mass extinction pattern. Only about 10 % crossed the K/Pg boundary and survived during the earliest Danian. The minor difference in the number of disappeared taxa is related to their latitude location or environment paleodepth. The changes in the species relative abundance, observed in the successive planktic foraminiferal assemblages, make it possible to recognize the Acme-stage 0 typical of the upper Maastrichtian interval. It is characterized by the highest species richness of Globotruncanids and heterohelicids specialists of tropical to subtropical marine conditions, the Acme-stage 1 typical of the Guembelitria cretacea Zone, and in particular of the Hedbergella holmdelensis Subzone dominated by “opportunists” species belonging to Guembelitria, the Acme-stage 2 which corresponds to the Pv. eugubina Zone dominated mainly by specimens belonging to Palaeoglobigerina and Parvularugoglobigerina and the Acme-stage 3 which characterizes mainly the Ps. pseudobulloides Zone dominated by biserial species belonging to Chiloguembelina and Woodringina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号