首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
3.
Kaposi’s sarcoma-associated herpesvirus (KSHV) has been consistently identified in Kaposi’s sarcomas (KS), body cavity-based lymphomas (BCBL), and some forms of Castleman’s disease. Previous serological tests with KS patient sera have detected lytic-cycle polypeptides from KSHV-infected BCBL cells. We have found that these polypeptides are predominantly encoded by the K8.1 open reading frame, which is present in the same genomic position as virion envelope glycoproteins of other gammaherpesviruses. The cDNA of K8.1 from BCBL-1 cells was found to encode a glycosylated protein with an apparent molecular mass of 37 kDa. K8.1 was found to be expressed during lytic KSHV replication in BCBL-1 cells and was localized on the surface of cells and virions. The results of immunofluorescence and immunoelectron microscopy suggest that KSHV acquires K8.1 protein on its virion surface during the process of budding at the plasma cell membrane. When KSHV K8.1 derived from mammalian cells was used as an antigen in immunoblot tests, antibodies to K8.1 were detected in 18 of 20 KS patients and in 0 of 10 KS-negative control subjects. These results demonstrate that the K8.1 gene encodes a KSHV virion-associated glycoprotein and suggest that antibodies to K8.1 may prove useful as contributory serological markers for infection by KSHV.  相似文献   

4.
5.
6.
7.
The rhesus rhadinovirus strain 17577 (RRV strain 17577) genome is essentially colinear with human herpesvirus 8 (HHV8)/Kaposi's sarcoma-associated herpesvirus (KSHV) and encodes several analogous open reading frames (ORFs), including the homologue of cellular interleukin-6 (IL-6). To determine if the RRV IL-6-like ORF (RvIL-6) is biologically functional, it was expressed either transiently in COS-1 cells or purified from bacteria as a glutathione S-transferase (GST)-RvIL-6 fusion and analyzed by IL-6 bioassays. Utilizing the IL-6-dependent B9 cell line, we found that both forms of RvIL-6 supported cell proliferation in a dose-dependent manner. Moreover, antibodies specific to the IL-6 receptor (IL-6R) or the gp130 subunit were capable of blocking the stimulatory effects of RvIL-6. Reciprocal titrations of GST-RvIL-6 against human recombinant IL-6 produced a more-than-additive stimulatory effect, suggesting that RvIL-6 does not inhibit but may instead potentiate normal cellular IL-6 signaling to B cells. These results demonstrate that RRV encodes an accessory protein with IL-6-like activity.  相似文献   

8.
9.
The DNA sequence for Kaposi’s sarcoma-associated herpesvirus was originally detected in Kaposi’s sarcoma biopsy specimens. Since its discovery, it has been possible to detect virus in cell lines established from AIDS-associated body cavity-based B-cell lymphoma and to propagate virus from primary Kaposi’s sarcoma lesions in a human renal embryonic cell line, 293. In this study, we analyzed the infectivity of Kaposi’s sarcoma-associated herpesvirus produced from these two sources. Viral isolates from cultured cutaneous primary KS cells was transmitted to an Epstein-Barr virus-negative Burkitt’s B-lymphoma cell line, Louckes, and compared to virus induced from a body cavity-based B-cell lymphoma cell line. While propagation of body cavity-based B-cell lymphoma-derived virus was not observed in 293 cell cultures, infection with viral isolates obtained from primary Kaposi’s sarcoma lesions induced injury in 293 cells typical of herpesvirus infection and was associated with apoptotic cell death. Interestingly, transient overexpression of the Kaposi’s sarcoma-associated herpesvirus v-Bcl-2 homolog delayed the process of apoptosis and prolonged the survival of infected 293 cells. In contrast, the broad-spectrum caspase inhibitors Z-VAD-fmk and Z-DEVD-fmk failed to protect infected cell cultures, suggesting that Kaposi’s sarcoma-associated herpesvirus-induced apoptosis occurs through a Bcl-2-dependent pathway. Kaposi’s sarcoma-associated herpesvirus isolates from primary Kaposi’s sarcoma lesions and body cavity-based lymphomas therefore may differ and are likely to have distinct contributions to the pathophysiology of Kaposi’s sarcoma.  相似文献   

10.
Kaposi’s sarcoma-associated herpesvirus (KSHV), or human herpesvirus 8, is a newly identified virus with tumorigenic potential. Here, we cloned and expressed the DNA polymerase (Pol-8) of KSHV and its processivity factor (PF-8). Pol-8 bound specifically to PF-8 in vitro. Moreover, the DNA synthesis activity of Pol-8 was shown in vitro to be strongly dependent on PF-8. Addition of PF-8 to Pol-8 allowed efficient synthesis of fully extended DNA products corresponding to the full-length M13 template (7,249 nucleotides), whereas Pol-8 alone could incorporate only several nucleotides. The specificity of PF-8 and Pol-8 for each other was demonstrated by their inability to be functionally replaced by the DNA polymerases and processivity factors of herpes simplex virus 1 and human herpesvirus 6.  相似文献   

11.
12.
13.
14.
Kaposi’s sarcoma-associated herpesvirus (KSHV) is consistently identified in Kaposi’s sarcoma and body cavity-based lymphoma. KSHV encodes a transforming protein called K1 which is structurally similar to lymphocyte receptors. We have found that a highly conserved region of the cytoplasmic domain of K1 resembles the sequence of immunoreceptor tyrosine-based activation motifs (ITAMs). To demonstrate the signal-transducing activity of K1, we constructed a chimeric protein in which the cytoplasmic tail of the human CD8α polypeptide was replaced with that of KSHV K1. Expression of the CD8-K1 chimera in B cells induced cellular tyrosine phosphorylation and intracellular calcium mobilization upon stimulation with an anti-CD8 antibody. Mutational analyses showed that the putative ITAM of K1 was required for its signal-transducing activity. Furthermore, tyrosine residues of the putative ITAM of K1 were phosphorylated upon stimulation, and this allowed subsequent binding of SH2-containing proteins. These results demonstrate that the KSHV transforming protein K1 contains a functional ITAM in its cytoplasmic domain and that it can transduce signals to induce cellular activation.  相似文献   

15.
16.
17.
Kaposi's sarcoma had been recognized as unique human cancer for a century before it manifested as an AIDS-defining illness with a suspected infectious etiology. The discovery of Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus-8, in 1994 by using representational difference analysis, a subtractive method previously employed for cloning differences in human genomic DNA, was a fitting harbinger for the powerful bioinformatic approaches since employed to understand its pathogenesis in KS. Indeed, the discovery of KSHV was rapidly followed by publication of its complete sequence, which revealed that the virus had coopted a wide armamentarium of human genes; in the short time since then, the functions of many of these viral gene variants in cell growth control, signaling apoptosis, angiogenesis, and immunomodulation have been characterized. This critical literature review explores the pathogenic potential of these genes within the framework of current knowledge of the basic herpesvirology of KSHV, including the relationships between viral genotypic variation and the four clinicoepidemiologic forms of Kaposi's sarcoma, current viral detection methods and their utility, primary infection by KSHV, tissue culture and animal models of latent- and lytic-cycle gene expression and pathogenesis, and viral reactivation from latency. Recent advances in models of de novo endothelial infection, microarray analyses of the host response to infection, receptor identification, and cloning of full-length, infectious KSHV genomic DNA promise to reveal key molecular mechanisms of the candidate pathogeneic genes when expressed in the context of viral infection.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号